September 23 Math 2306 sec 54 Fall 2015

Section 4.3: Homogeneous Equations with Constant Coefficients

We are considering a second order, linear, homogeneous equation with constant coefficients

$$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0.$$

Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

The three cases to consider are (i) two distict real roots, (ii) one repeated real root, and (iii) a pair of complex conjugate roots.

Case I: Two distinct real roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac > 0$

$$m_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \qquad m_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

A fundamental solution set is

$$y_1 = e^{m_1 x}, \qquad y_2 = e^{m_2 x}.$$

And the general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.$$

Find the general solution of the ODE

$$y'' - 2y' - 2y = 0$$

Characteristic equation $m^2 - 2m - 2 = 0$
 $m^2 - 2m + 1 - 1 - 2 = 0$
 $(m - 1)^2 - 3 = 0 \implies (m - 1)^2 = 3$

$$M_1 = 1+\sqrt{3}$$
 $M_2 = 1-\sqrt{3}$ $y_1 = e^{(1+\sqrt{3})x}$ $y_2 = e^{(1+\sqrt{3})x}$

Solve the IVP

$$y'' + y' - 12y = 0$$
, $y(0) = 1$, $y'(0) = 10$
Characteristic equation: $m^2 + m - 12 = 0$
 $(m+4)(m-3) = 0$
 $m_1 = 4$ or $m_2 = 3$
So $y_1 = e^{-4x}$ and $y_2 = e^{-4x}$

$$4c_{1} + 4c_{2} = 4$$

$$-4c_{1} + 3c_{1} = 10 \quad ab^{2}$$

$$7c_{2} = 14 \implies c_{2} = 2$$

$$(-1-c_{1} = 1-2) = -2$$

The solution to the IVP is $y = -e^{-4x} + 2e^{3x}.$

Case II: One repeated real root

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac = 0$
 $y = c_1e^{mx} + c_2xe^{mx}$ where $m = \frac{-b}{2a}$

Use reduction of order to show that if $y_1 = e^{\frac{-bx}{2a}}$, then $y_2 = xe^{\frac{-bx}{2a}}$.

Standard form
$$y'' + \frac{b}{a}y' + \frac{c}{a}y = 0$$

$$P(x) = \frac{b}{a}, -\int P(x)dx = -\frac{b}{a}x$$

$$-\int P(x)dx = -\frac{b}{a}x$$

$$u = \int \frac{e^{-\int \rho(x)dx}}{(y_1(u))^2} dx = \int \frac{e^{-\frac{b}{a}x}}{\left(e^{-\frac{b}{2}x}\right)^2} dx = \int \frac{e^{-\frac{b}{a}x}}{e^{-\frac{b}{a}x}} dx$$

$$= \int dx = x$$

$$\frac{-b}{2a} \times$$
so $y_2 = uy_1 = x e$

Solve the ODE

$$4y'' - 4y' + y = 0$$
Characteristic Eqn:
$$4m^2 - 4m + 1 = 0$$

$$(2m-1)^2 = 0$$

$$2m-1=0 \implies m = \frac{1}{2}$$

$$y_1 = e$$
and
$$y_2 = xe$$

The general Solution is

$$y = C_1 e + C_2 \times e$$

Solve the IVP

$$y'' + 6y' + 9y = 0$$
, $y(0) = 4$, $y'(0) = 0$
Characteristic Eqn: $m^2 + 6m + 9 = 0$
 $(m + 3)^2 = 0$
 $m = -3$
 $y_1(x) = e^{-3x}$ and $y_2(x) = x e^{-3x}$

The general solution to the ODE is

Apply
$$3(0)=4$$
 $3(0)=0$
 $3(0)=4$ $3(0)=0$
 $3(0)=4$ $3(0)=0$
 $3(0)=4$ $3(0)=0$

$$y'(0) = -3(y) \cdot e' + C_2 \cdot e' - 3C_2 \cdot 0 \cdot e' = 0$$

-12 + C2 = 0 => (3=12

The solution to the NP is
$$y = 4 e^{-3x} + 12x e^{-3x}.$$

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$ $y = e^{\alpha x}(c_1 \cos(\beta x) + c_2 \sin(\beta x))$, where the roots $m = \alpha \pm i\beta$, $\alpha = \frac{-b}{2a}$ and $\beta = \frac{\sqrt{4ac - b^2}}{2a}$

The solutions can be written as

$$Y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x}e^{i\beta x}$$
, and $Y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x}e^{-i\beta x}$.

Deriving the solutions Case III

Recall Euler's Formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$Y_{1}(x) = e^{\alpha x} \left(\omega_{1}(\beta x) + i e^{\alpha x} \operatorname{Sin}(\beta x) \right)$$

$$Y_{2}(x) = e^{\alpha x} \operatorname{Cor}(\beta x) - i e^{\alpha x} \operatorname{Sin}(\beta x)$$

$$\operatorname{Set} \quad Y_{1}(x) = \frac{1}{2} \left(Y_{1}(x) + Y_{2}(x) \right)$$

$$= \frac{1}{2} \left(2e^{\alpha x} \operatorname{Cos}(\beta x) \right) = e^{\alpha x} \operatorname{Cos}(\beta x)$$

 $y_{z}(x) = \frac{1}{2i} \left(Y_{1}(x) - Y_{2}(x) \right)$

=
$$\frac{1}{2i} \left(2i e^{x} Sin(\beta x) \right) = e^{x} Sin(\beta x)$$

So our fundamental solution set
$$y_{1}(x) = e^{-\alpha x} \cos(\beta x) , \quad y_{2}(x) = e^{-\alpha x} \sin(\beta x)$$