September 23 Math 2306 sec 54 Fall 2015

Section 4.3: Homogeneous Equations with Constant Coefficients
We are considering a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

The three cases to consider are (i) two distict real roots, (ii) one repeated real root, and (iii) a pair of complex conjugate roots.

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0 \\
m_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad m_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

A fundamental solution set is

$$
y_{1}=e^{m_{1} x}, \quad y_{2}=e^{m_{2} x} .
$$

And the general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} .
$$

Example
Find the general solution of the ODE

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

Characteristic equation $m^{2}-2 m-2=0$

$$
\begin{aligned}
& m^{2}-2 m+1-1-2=0 \\
& (m-1)^{2}-3=0 \Rightarrow(m-1)^{2}=3 \\
& m-1= \pm \sqrt{3} \Rightarrow m=1 \pm \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& m_{1}=1+\sqrt{3}, m_{2}=1-\sqrt{3} \\
& y_{1}=e^{(1+\sqrt{3}) x} \text { and } y_{2}=e^{(1-\sqrt{3}) x}
\end{aligned}
$$

The geneal solution is

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+y^{\prime}-12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=10
$$

Characteristic equation: $\quad m^{2}+m-12=0$

$$
\begin{aligned}
(m+4)(m-3) & =0 \\
m_{1} & =-4 \text { or } m_{2}
\end{aligned}=3
$$

so $y_{1}=e^{-4 x}$ and $y_{2}=e^{3 x}$

The generd solution to the DE is

$$
y=c_{1} e^{-4 x}+c_{2} e^{3 x}
$$

Applz $y(0)=1, y^{\prime}(0)=10$

$$
\begin{aligned}
& y^{\prime}=-4 c_{1} e^{-4 x}+3 c_{2} e^{3 x} \\
& y(0)=c_{1} e^{0}+c_{2} e^{0}=1 \Rightarrow c_{1}+c_{2}=1 \\
& y^{\prime}(0)=-4 c_{1} e^{0}+3 c_{2} e^{\circ}=10 \Rightarrow-4 c_{1}+3 c_{2}=10
\end{aligned}
$$

$$
\begin{aligned}
& 4 c_{1}+4 c_{2}=4 \\
& \frac{-4 c_{1}+3 c_{2}}{}=10 \text { ad } \\
& 7 c_{2}=14 \Rightarrow c_{2}=2 \\
& c_{1}=1-c_{2}=1-2=-1
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=2
\end{aligned}
$$

The solution to the IVP is

$$
y=-e^{-4 x}+2 e^{3 x}
$$

Case II: One repeated real root

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0 \\
y=c_{1} e^{m x}+c_{2} x e^{m x} \quad \text { where } \quad m=\frac{-b}{2 a}
\end{gathered}
$$

Use reduction of order to show that if $y_{1}=e^{\frac{-b x}{2 a}}$, then $y_{2}=x e^{\frac{-b x}{2 a}}$.

$$
\begin{gathered}
\text { Standerd form } y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0 \\
\begin{array}{c}
P(x)=\frac{b}{a}, \quad-\int P(x) d x=-\int \frac{b}{a} d x=-\frac{b}{a} x \\
e^{-\int P(x) d x}=e^{\frac{-b}{a} x}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& u= \int \frac{e^{-\int p(x) d x}}{\left(y_{1}(x)\right)^{2}} d x=\int \frac{e^{\frac{-b}{a} x}}{\left(e^{\frac{-b}{2 a} x}\right)^{2}} d x=\int \frac{e^{\frac{-b}{a} x}}{e^{-\frac{b}{a} x}} d x \\
&=\int d x=x \\
& \text { so } \quad y_{2}=u y_{1}=x e^{\frac{-b}{2 a} x}
\end{aligned}
$$

Example

Solve the ODE

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Characteristic Eqn: $\quad 4 m^{2}-4 n+1=0$

$$
\begin{gathered}
(2 m-1)^{2}=0 \\
2 m-1=0 \Rightarrow m=\frac{1}{2} \\
y_{1}=e^{\frac{1}{2} x} \text { and } y_{2}=x e^{\frac{1}{2} x}
\end{gathered}
$$

The gererd Solution is

$$
y=c_{1} e^{\frac{1}{2} x}+c_{2} x e^{\frac{1}{2} x}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad y(0)=4, \quad y^{\prime}(0)=0
$$

Characteristic Egn: $\quad m^{2}+6 m+9=0$

$$
\begin{array}{r}
(m+3)^{2}=0 \\
m=-3 \\
y_{1}(x)=e^{-3 x} \text { and } y_{2}(x)=x e^{-3 x}
\end{array}
$$

The genera solution to the $O D E$ is

$$
y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}
$$

Apply $y(0)=4 \quad y^{\prime}(0)=0$

$$
\begin{aligned}
& y^{\prime}=-3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 c_{2} x e^{-3 x} \\
& y(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}=4 \Rightarrow c_{1}=4
\end{aligned}
$$

$$
\begin{array}{r}
y^{\prime}(0)=-3(4) e^{0}+c_{2} e^{0}-3 c_{2} \cdot 0 e^{\circ}=0 \\
-12+c_{2}=0 \Rightarrow c_{2}=12
\end{array}
$$

The solution to the IJP is

$$
y=4 e^{-3 x}+12 x e^{-3 x}
$$

Case III: Complex conjugate roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0 \\
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right), \quad \text { where the roots } \\
m=\alpha \pm i \beta, \quad \alpha=\frac{-b}{2 a} \quad \text { and } \quad \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
\end{gathered}
$$

The solutions can be written as

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

Deriving the solutions Case III
Recall Euler's Formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

$$
\begin{aligned}
& Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}=e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
& Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x}=e^{\alpha x}(\cos (\beta x)-i \sin (\beta x))
\end{aligned}
$$

Well use the principle of super position to eliminate the complex stuff.

$$
\begin{aligned}
& Y_{1}(x)=e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) \\
& Y_{2}(x)=e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

Set $y_{1}(x)=\frac{1}{2}\left(Y_{1}(x)+Y_{2}(x)\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)\right)=e^{\alpha x} \cos (\beta x) \\
y_{2}(x) & =\frac{1}{2 i}\left(Y_{1}(x)-Y_{2}(x)\right)
\end{aligned}
$$

$$
=\frac{1}{2 i}\left(2 i e^{\alpha x} \sin (\beta x)\right)=e^{\alpha x} \sin (\beta x)
$$

So our fundamental solution set

$$
y_{1}(x)=e^{\alpha x} \cos (\beta x), y_{2}(x)=e^{\alpha x} \sin (\beta x)
$$

