Sept 24 Math 2306 sec. 53 Fall 2018

Section 8: Homogeneous Equations with Constant Coefficients
We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

Question: What sort of function y could be expected to satisfy

$$
y^{\prime \prime}=\text { constant } y^{\prime}+\text { constant } y ?
$$

We look for solutions of the form $y=e^{m x}$ with m constant. Subinto $a y^{\prime \prime}+b y^{\prime}+c y=0$

If $y=e^{m x}$, then $y^{\prime}=m e^{m x}$ and $y^{\prime \prime}=m^{2} e^{m x}$

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=a\left(m^{2} e^{m x}\right)+b\left(m e^{m x}\right)+c e^{m x}=0 \\
e^{m x}\left(a m^{2}+b m+c\right)=0
\end{gathered}
$$

This product is zero if $a m^{2}+b m+c=0$
So we have solutions to the ODE of the form $e^{m x}$ if m solves the quadratic equation.

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0 \\
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \quad \text { where } \quad m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Show that $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ are linearly independent. Let's use the Wronskion.
$W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}e^{m_{1} x} & e^{m_{2} x} \\ m_{1} e^{m_{1} x} & m_{2} e^{m_{2} x}\end{array}\right|$

$$
\begin{aligned}
& =e^{m_{1} x}\left(m_{2} e^{m_{2} x}\right)-m_{1} e^{m_{1} x}\left(e^{m_{2} x}\right) \\
& =e^{\left(m_{1}+m_{2}\right) x}\left(m_{2}-m_{1}\right) \\
& e^{\left(m_{1}+m_{2}\right) x} \neq 0 \quad m_{2}-m_{1} \neq 0 \\
& \operatorname{lin}_{102}^{102} \operatorname{tin} d \\
& \text { Since } m_{1} \neq m_{2} \text { red } c^{\text {ass }}
\end{aligned}
$$

y_{1} and y_{2} are linearly independent since

$$
w \neq 0
$$

Example
Solve the IVP

$$
y^{\prime \prime}+y^{\prime}-12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=10
$$

The characteristic equation is

$$
\begin{aligned}
& m^{2}+m-12=0 \\
& (m+4)(m-3)=0 \Rightarrow \begin{array}{l}
2 \text { roots } \\
m_{1}=-4 \\
y_{1}=e^{-4 x} \quad \text { and } m_{2}=3 \\
y=c_{1} e^{-4 x}+c_{2} e^{3 x}
\end{array}
\end{aligned}
$$

Apply the IC

$$
y^{\prime}=-4 c_{1} e^{-4 x}+3 c_{2} e^{3 x}
$$

$$
\begin{aligned}
& y(0)=1=c_{1} e^{0}+c_{2} e^{0} \Rightarrow c_{1}+c_{2}=1 \\
& y^{\prime}(0)=10=-4 c_{1} e^{0}+3 c_{2} e^{0} \Rightarrow-4 c_{1}+3 c_{2}=10 \\
& 4 C_{1}+4 C_{2}=4 \\
& 7 c_{2}=14 \\
& c_{2}=2 \\
& C_{1}=1-C_{2}=1-2=-1
\end{aligned}
$$

The solution to the IVP is

$$
y=-e^{-4 x}+2 e^{3 x}
$$

Case II: One repeated real root

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0 \\
y=c_{1} e^{m x}+c_{2} x e^{m x} \quad \text { where } \quad m=\frac{-b}{2 a}
\end{gathered}
$$

Use reduction of order to show that if $y_{1}=e^{\frac{-b x}{2 a}}$, then $y_{2}=x e^{\frac{-b x}{2 a}}$.

$$
y_{2}=u y_{1} \text { where } u=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}\right)^{2}} d x
$$

Standard form: $y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0$

$$
P(x)=\frac{b}{a} \text { so }-\int P(x) d x=-\int \frac{b}{a} d x=-\frac{b}{a} x
$$

$$
\begin{aligned}
& \left(y_{1}\right)^{2}=\left(e^{\frac{-b}{2 a} x}\right)^{2}=e^{2\left(\frac{-b}{2 a} x\right)}=e^{\frac{-b}{a} x} \\
& u=\int \frac{e^{-\frac{b}{a} x}}{e^{\frac{-b}{a} x}} d x=\int d x=x
\end{aligned}
$$

So $y_{2}=u y_{1}=x e^{\frac{-b}{2 a} x}$

Example

Solve the ODE

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Charactostic eqn $4 m^{2}-4 m+1=0$

$$
(2 m-1)^{2}=0
$$

$m=\frac{1}{2}$ repeated not

$$
y_{1}=e^{\frac{1}{2} x}, y_{2}=x e^{\frac{1}{2} x}
$$

The ginend solution is

$$
y=c_{1} e^{\frac{1}{2} x}+c_{2} x e^{\frac{1}{2} x}
$$

