September 25 Math 2306 sec 51 Fall 2015

Section 4.3: Homogeneous Equations with Constant Coefficients
We are considering a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

The three cases to consider are (i) two distict real roots, (ii) one repeated real root, and (iii) a pair of complex conjugate roots.

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0 \\
m_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad m_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

A fundamental solution set is

$$
y_{1}=e^{m_{1} x}, \quad y_{2}=e^{m_{2} x} .
$$

And the general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} .
$$

Case II: One repeated real root

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0 \\
m_{1}=m_{2}=m=\frac{-b}{2 a}
\end{gathered}
$$

A fundamental solution set is

$$
y_{1}=e^{m x}, \quad y_{2}=x e^{m x}
$$

And the general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Case III: Complex conjugate roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0 \\
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right), \quad \text { where the roots } \\
m=\alpha \pm i \beta, \quad \alpha=\frac{-b}{2 a} \quad \text { and } \quad \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
\end{gathered}
$$

The solutions can be written as

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

Principe r of sups position

Deriving the solutions Case III
Recall Euler's Formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

$$
\begin{aligned}
Y_{1}(x)=e^{(\alpha+i \beta) x} & =e^{\alpha x} \cdot e^{i \beta x}=e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
Y_{2}(x)=e^{(\alpha-i \beta) x} & =e^{\alpha x} e^{-i \beta x}=e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
Y_{1} & =e^{\alpha x} \cos \beta x+i e^{\alpha x} \sin \beta x \\
Y_{2} & =e^{\alpha x} \cos \beta x-i e^{\alpha x} \sin \beta x
\end{aligned}
$$

Let $y_{1}=\frac{1}{2}\left(Y_{1}+Y_{2}\right)=\frac{1}{2}\left(2 e^{\alpha x} \cos \beta x\right)$

$$
\begin{gathered}
y_{1}=e^{\alpha x} \cos \beta x \\
y_{2}=\frac{1}{2 i}\left(Y_{1}-Y_{2}\right)=\frac{1}{2 i}\left(2 i e^{\alpha x} \sin \beta x\right) \\
y_{2}=e^{\alpha x} \sin \beta x
\end{gathered}
$$

So a fundomented Solution seat is

$$
e^{\alpha x} \cos \beta x, e^{\alpha x} \sin \beta x
$$

September 23, $2015 \quad 6 / 58$

And the genend solution is

$$
y=c_{1} e^{d x} \cos \beta x+c_{2} e^{\alpha x} \sin \beta x
$$

Example
Solve the ODE

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0
$$

Characteristic Eq: $\quad m^{2}+4 m+6=0$

$$
\begin{gathered}
m^{2}+4 m+4-4+6=0 \\
m^{2}+4 m+4+2=0 \Rightarrow(m+2)^{2}+2=0 \\
(m+2)^{2}=-2 \Rightarrow m+2= \pm \sqrt{2} i \\
m=-2 \pm \sqrt{2} i
\end{gathered}
$$

$\alpha=-2$ and $\beta=\sqrt{2}$

$$
x_{1}=e^{-2 t} \cos (\sqrt{2} t), x_{2}=e^{-2 t} \sin (\sqrt{2} t)
$$

The genera solution is

$$
x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Example
Solve the IVP

$$
y^{\prime \prime}+4 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-5
$$

Charactenstic Eqn: $\quad m^{2}+4=0$

$$
\begin{gathered}
m^{2}=-4 \\
m= \pm 2 i=0 \pm 2 i \\
\alpha=0, \beta=2 \\
y_{1}=e^{0 x} \cos 2 x=\cos 2 x, \quad y_{2}=e^{0 x} \sin 2 x=\sin 2 x
\end{gathered}
$$

The general solution is

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x
$$

Impose the conditions $y(0)=3, y^{\prime}(0)=-5$

$$
\begin{aligned}
& y^{\prime}=-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x \\
& y(0)=c_{1} \cos 0+c_{2} \sin 0=3 \Rightarrow c_{1}=3 \\
& y^{\prime}(0)=-2 c_{1} \sin 0+2 c_{2} c_{0} 0=-5 \\
& 2 c_{2}=-5 \Rightarrow c_{2}=\frac{-5}{2}
\end{aligned}
$$

The solution to the IVP is

$$
y=3 \cos 2 x-\frac{5}{2} \sin 2 x
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$.
- If a root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- It may require a computer algebra system to find the roots for a high degree polynomial.

Example
Solve the ODE This is $3^{\text {rd }}$ order linear, homogeneous, $y^{\prime \prime \prime}-4 y^{\prime}=0$ const and coefficient.

Characteristic Eqn:

$$
\begin{aligned}
m^{3}-4 m=0 \Rightarrow m\left(m^{2}-4\right)=0 \\
m(m-2)(m+2)=0 \\
m=0, m=2, \text { or } m=-2
\end{aligned}
$$

$$
\begin{gathered}
y_{1}=e^{m_{1} x}=e^{0 x}=1, \quad y_{2}=e^{m_{2} x}=e^{2 x} \\
y_{3}=e^{m_{3} x}=e^{-2 x}
\end{gathered}
$$

The genera solution is

$$
\begin{aligned}
& y=c_{1}(1)+c_{2} e^{2 x}+c_{3} e^{-2 x} \\
& y=c_{1}+c_{2} e^{2 x}+c_{3} e^{-2 x}
\end{aligned}
$$

Example
Solve the ODE
$y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0 \quad$ Characteristic Eqn:

$$
\begin{gathered}
m^{3}-3 m^{2}+3 m-1=0 \\
(m-1)^{3}=0
\end{gathered}
$$

$m=1$ is a triple root.
So $y_{1}=e^{m x}=e^{x}$

$$
y_{2}=x y_{1}=x e^{x} \text { and } y_{3}=x y_{2}=x^{2} e^{x}
$$

The genera solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

