September 26 MATH 1113 sec. 51 Fall 2018

Section 2.1: Average Rate of Change & Difference Quotients

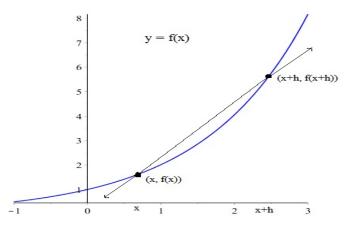


Figure: Consider points (x, f(x)) and (x + h, f(x + h)) on the graph of *f* and the straight line through them. This line is called a **secant** line.

Average Rate of Change: Difference Quotients

Let *f* be defined at *x* and *x* + *h* for nonzero number *h*. The line passing through (x, f(x)) and (x + h, f(x + h)) is called a **secant** line. Determine its slope. (x, f(x)) = (x, y)

(x+h, f(x+h)) = (x2, y2)

$$= \frac{f(x+n) - f(x)}{x+h - x} = \frac{f(x+h) - f(x)}{h}$$

 $\frac{\Delta y}{\Delta x} = \frac{y_1 - y_1}{x_2 - x_1}$

The result is called a **difference quotient**. It is the **average rate of change** of *f* on the interval with end points *x* and x + b.

Example

For $h \neq 0$, construct and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x) = \frac{1}{x}$.

$$\frac{f(x+h)-f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h} \cdot \left(\frac{\chi(x+h)}{\chi(x+h)}\right)$$
$$= \frac{\chi - (x+h)}{h\chi(x+h)}$$
$$= \frac{\chi - (x+h)}{h\chi(x+h)} = \frac{-h}{h\chi(x+h)} = \frac{-1}{\chi(x+h)}$$

<ロ> <四> <四> <四> <四> <四</p>

Question

The difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x) = 3x^2 - x$ is (a) 6x + 3h - 1

(b) 3*h*+1

(c)
$$\frac{3h^2-2x+h}{h}$$

(d) 6*x* - 1

(e) none of the above is the correct answer

Section 2.2: Piecewise Defined Functions

We wish to consider functions that are defined by different rules over different parts of the domain. These are called piecewise defined functions. An example is

$$f(x) = \begin{cases} x^2 - 1, & x < 0\\ 2, & 0 \le x < 1\\ \frac{1}{x}, & x \ge 1 \end{cases}$$

To plot this, we need to know the graphs of
y:x^2 - 1, y = 2, and y = $\frac{1}{x}$

Example Evaluating Piecewise Defined Functions

Let
$$f(x) = \begin{cases} x^2 - 1, & x < 0 \\ 2, & 0 \le x < 1 \\ \frac{1}{x}, & x \ge 1 \end{cases}$$

Evaluate

- (a) $f(4) = \frac{1}{4}$
- (b) $f(-\pi) = (-\pi)^2 1 = \pi^2 1$

(c) f(0) = 2

(d) $f(\frac{1}{3}) = 2$

471 -11 < 0 0 < 0 < 1 0< 5 < 1

Question

Evaluate g(2) where

$$g(x) = \left\{ egin{array}{ccc} rac{x+1}{x-2}, & x \leq -3 \ x^3-2x, & -3 < x < 1 \ rac{x}{2}-3, & x \geq 1 \end{array}
ight.$$

September 24, 2018

7/12

(a) g(2) is undefined because of division by zero

(b) g(2) = 4

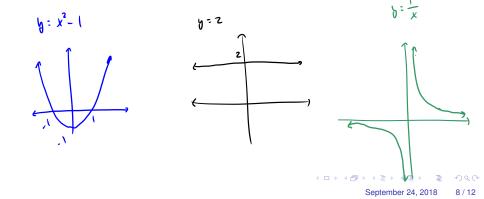
(c)
$$g(2) = -2$$

(d) g(2) is undefined because 2 is not in the domain

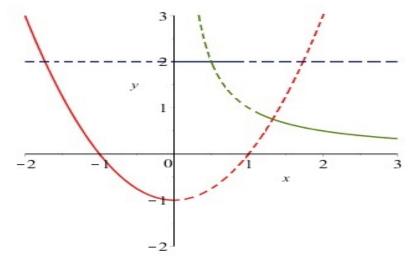
Plotting Piecewise Defined Functions

If we know how to plot the different pieces of a piecewise defined function, then we can sketch its plot. As an example, let's plot

$$f(x) = \begin{cases} x^2 - 1, & x < 0\\ 2, & 0 \le x < 1\\ \frac{1}{x}, & x \ge 1 \end{cases}$$



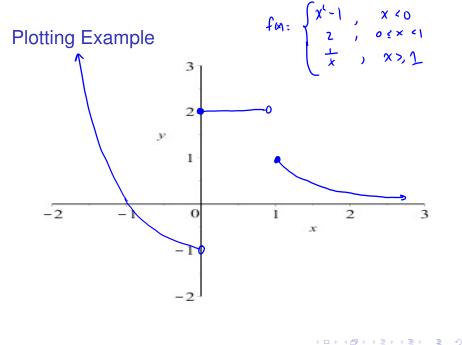
Plotting Example



September 24, 2018 9 / 12

2

イロト イヨト イヨト イヨト



Piecewise Defined Functions

Let
$$f(x) = \begin{cases} \frac{x}{x-2}, & x < 2\\ 1, & x = 2, \\ x^2, & x > 2 \end{cases}$$
. Suppose that $h > 0$, and evaluate

(a) f(2) = 1

(b)
$$f(2+h) = (2+h)^2 = 4+4h+h^2$$
 2+h > 2 since h>0

(c)
$$f(2-h) = \frac{2-h}{2-h-2}$$

= $\frac{2-h}{-h} = \frac{h-2}{h}$

2-h < 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

11/12

Question Let $H(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$ Then for $h \neq 0, \quad \frac{H(1 + h) - H(1)}{h} = 1$

(a)
$$\frac{h^2+2h}{h+1}$$

(b)
$$\frac{h+2}{h+1}$$

(c) $\frac{2+h}{h}$

(d) is undefined.