Sept. 26 Math 1190 sec. 51 Fall 2016

Section 3.1: The Chain Rule

The chain rule can be iterated to account for multiple compositions. For example, suppose f, g, h are appropriately differentiable, then

$$\frac{d}{dx}(f \circ g \circ h)(x) = \frac{d}{dx}f(g(h(x))) = f'(g(h(x))g'(h(x))h'(x))$$

Note that the outermost function is f, and its inner function is a composition g(h(x)).

So the derivative of the outer function evaluated at the inner is f'(g(h(x))) which is multiplied by the derivative of the inner function—**itself based on the chain rule**—g'(h(x))h'(x).

If
$$h(x) = v$$
, $g(v) = u$, and $y = f(u)$, then

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dv}\frac{dv}{dx}$$

Evaluate the derivative
$$\frac{d}{dx} \exp(\cot(\pi x))$$

 $e_{xp}(c_{ut}(\pi x)) = f(q(h(x))) + f(h(x) = \pi x = v)$
 $g(v) = c_{0t}v = u$
 $f(u) = e^{u}$
 $f(u) = e^{u}$
 $h'(x) = \pi$
 $g'(v) = -c_{s}c^{2}v$
 $f'(u) = e^{u}$
 $f'(u) = e^{u}$

 $= -\pi c_{c}c^{2}(\pi x) e^{-C_{0}t(\pi x)}$

Exponential of Base a

Let a > 0 with $a \neq 1$. By properties of logs and exponentials

$$a^{x} = e^{(\ln a)x}.$$
(In a) x is the
constant line times

$$f(x) = e^{x}, \quad f'(x) = ha \quad the variable x$$

$$f(x) = e^{x}, \quad f'(x) = e^{x}$$

$$\frac{d}{dx}a^{x} = \frac{d}{dx}e^{(\ln a)x} = e^{(\ln a)x}.$$
In $a = a \ln a = (\ln a)a$

1.1

Theorem: (Derivative of $y = a^x$ **)** Let a > 0 and $a \neq 1$. Then

$$\frac{d}{dx}a^x = a^x \ln a$$

 $\frac{d}{dx}a^{*}=a^{*}ha$

Evaluate

(a) $\frac{d}{dx}4^x = Y^x \int_{M} Y$

(b)
$$\frac{d}{dx} 2^{\cos x} = \left(\begin{array}{c} u \\ q \end{array} \right) \left(- \sin x \right)$$

 $= 2^{\cos x} \left(\ln z \right) \left(- \sin x \right)$
 $= 2^{\cos x} \left(\ln z \right) \left(- \sin x \right)$
 $= - \left(\ln z \right) \sin x$
 $2^{\cos x} \left(\ln z \right)$
 $f(u) = 2^{u}$
 $f'(u) = 2^{u} \ln z$

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

The chain rule states that for a differentiable composition f(g(x))

$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$

For y = f(u) and u = g(x) $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$

Assume f is a differentiable function of x. Find an expression for the derivative:

$$\frac{d}{dx} (f(x))^2 = \Im f(x) \cdot f'(x)$$

$$\frac{d}{dx} \tan(f(x)) = \operatorname{Sec}^{2}(f(x)) \cdot f'(x)$$

Suppose we know that y = f(x) for some differentiable function (but we don't know exactly what *f* is). Find an expression for the derivative.

$$\frac{d}{dx} y^{3} = 3y^{2} \cdot \frac{dy}{dx}$$
Inside is y
outside is u³
"3 times y² times $\frac{dy}{dx}$ "

$$\frac{d}{dx} x^{2}y^{2} = (\frac{d}{dx} x^{2})y^{2} + x^{2}(\frac{d}{dx} y^{2})$$
Product rule

$$\int = 2xy^{2} + x^{2}(zy \cdot \frac{dy}{dx})$$
Product rule

$$\frac{d}{dx} fg = fg + fg$$

$$\frac{dy}{dx} fg = fg + fg$$

Implicitly defined functions

A relation—an equation involving two variables x and y—such as

$$x^2 + y^2 = 16$$
 or $(x^2 + y^2)^3 = x^2$

implies that *y* is defined to be one or more functions of *x*.

e.g.
$$x^2 + y^2 = 16 \Rightarrow y^2 = 16 - x^2$$

$$\Rightarrow y = \sqrt{16 - x^2} \quad OR \quad y = -\sqrt{16 - x^2}$$

$$\Rightarrow gossible functions$$

Explicit -vs- Implicit

A function is defined **explicitly** when given in the form

y = f(x).e.g. $y = ton(x^2)$ or $y = e^{2x}$

A function is defined *implicitly* when it is given as a relation

or constant C.

$$e, g, x^2 + y^2 = 16$$
, $x^2 y^2 + ton (x y) = 15$

Implicit Differentiation

Since $x^2 + y^2 = 16$ *implies* that y is a function of x, we can consider it's derivative.

Find
$$\frac{dy}{dx}$$
 given $x^2 + y^2 = 16$.
Start will the relation, take the derivative $\frac{d}{dx}$, with
respect to x, of both sides.
 $\frac{d}{dx} \left(x^2 + y^2 \right) = \frac{d}{dx} (16)$
 $\frac{d}{dx} x^2 + \frac{d}{dx} y^2 = 0$
 $\frac{d}{dx} y^2 = 2y \cdot \frac{dy}{dx}$
 $\frac{d}{dx} y^2 = 2y \cdot \frac{dy}{dx}$
 $\frac{d}{dx} y^2 = 2y \cdot \frac{dy}{dx}$

Now solve for dy

Note $\frac{d}{dx} x^2 = 2x \cdot \frac{dx}{dx}$ $= 2x \cdot 1$ $= 2\chi$

Subtract 2x $2\sqrt{\frac{dy}{dx}} = -ZX$

Show that the same result is obtained knowing

$$y = \sqrt{16 - x^2} \quad \text{or} \quad y = -\sqrt{16 - x^2}.$$

Squar root rule: $\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$
 $\frac{d}{dx}y = \frac{d}{dx}\sqrt{16 - x^2} = \frac{1}{2\sqrt{16 - x^2}} \cdot (6 - 2x)$ inside $16 - x^2$
 $\frac{d}{dx}y = \frac{1}{2\sqrt{16 - x^2}} = \frac{1}{2\sqrt{16 - x^2}} \cdot (6 - 2x)$ inside $16 - x^2$
 $\frac{1}{2\sqrt{16 - x^2}} = \frac{-x}{\sqrt{16 - x^2}} = \frac{-x}{\sqrt{3}}$
Since $y = \sqrt{16 - x^2}$

If
$$y = -\sqrt{16 - x^2}$$
 then
 $\frac{d}{dx} y = \frac{d}{dx} \left(-\sqrt{16 - x^2} \right) = -\frac{d}{dx} \sqrt{16 - x^2}$
 $= -\left(\frac{-x}{\sqrt{16 - x^2}} \right)$
 $= \frac{-x}{\sqrt{16 - x^2}} = \frac{-x}{\sqrt{2}}$

Find
$$\frac{dy}{dx}$$
 given $x^2 - 3xy + y^2 = y$.
Take $\frac{d}{dx}$ of both sides.
 $\frac{d}{dx} (x^2 - 3xy + y^2) = \frac{d}{dx} y^2$
 $\frac{d}{dx} (x^2 - 3\frac{d}{dx} (xy) + \frac{d}{dx} y^2 = \frac{dy}{dx}$
 $\frac{d}{dx} x^2 - 3\frac{d}{dx} (xy) + \frac{d}{dx} y^2 = \frac{dy}{dx}$
 $\frac{1}{product}$
 $\frac{d}{dx} - 3(1 \cdot y + x\frac{dy}{dx}) + 2y \cdot \frac{dy}{dx} = \frac{dy}{dx}$
isolale $\frac{dy}{dx}$ using algebra

move dy ten $2x - 3y - 3x \frac{dy}{dx} + 2y \frac{dy}{dx} = \frac{dy}{dx}$ to the seft ond all other to $2x - 3y - 3y_0 \frac{dy}{dx} + 2y \frac{dy}{dx} - \frac{dy}{dy} = 0$ the right $-3x \frac{dy}{dx} + 2y \frac{dy}{dx} - \frac{dy}{dx} = 3y - 2x$ $\frac{dy}{dx}\left(-3x+2y-1\right) = 3y -2x$ $\frac{dy}{dx} = \frac{3y - 2x}{-3x + 2y - 1} = \frac{3y - 2x}{2y - 3x - 1}$

Finding a Derivative Using Implicit Differentiation:

- Take the derivative of both sides of an equation with respect to the independent variable.
- Use all necessary rules for differenting powers, products, quotients, trig functions, exponentials, compositions, etc.
- ► Remember the chain rule for each term involving the dependent variable (e.g. mult. by $\frac{dy}{dx}$ as required).
- Use necessary algebra to isolate the desired derivative $\frac{dy}{dx}$.

sin(x + y) = 2x

 $\frac{d}{dy} \sin(x+y) = \frac{d}{dy} (2x)$ $C_{os}(x+y) \cdot \frac{d}{dx}(x+y) = 2$ $C_{05}(x+y)\left(1+\frac{dy}{dx}\right)=Z$ $\cos(x+y) + \cos(x+y) \frac{dy}{dx} = 2$ $Cos(x+y) \frac{dy}{dx} = 2 - Cos(x+y)$

= 2 Sec(x+y) - |

Example

Find $\frac{dS}{dr}$.

 $e^{Sr} + S = r^2 + 2$

Sis dependent like y

ris independent like x

 $\frac{d}{dr}\left(e^{Sr}+S\right) = \frac{d}{dr}\left(r^{2}+2\right)$

$$\frac{1}{dr} \frac{s^{r}}{e^{r}} + \frac{1}{dr} s = dr + 0$$

$$\frac{s^{r}}{e^{r}} \frac{d}{dr} (s_{r}) + \frac{ds}{dr} = 2r$$

$$\frac{s^{r}}{e^{r}} \left(\frac{ds}{dr} + 5 + 5\right) + \frac{ds}{dr} = 2r$$

 $\frac{s_r}{s_r}$, $\frac{ds}{s_r}$ + $\frac{s_r}{s_r}$ + $\frac{ds}{s_r}$ = $\frac{s_r}{s_r}$

 $re^{Sr} \frac{dS}{dr} + \frac{dS}{dr} = 2r - Se^{Sr}$ $\left(re^{sr}+1\right)\frac{dS}{dr} = 2r - Se^{sr}$

 $\frac{dS}{dr} = \frac{2r - Se^{sr}}{re^{sr} + 1}$