Sept. 26 Math 1190 sec. 51 Fall 2016

Section 3.1: The Chain Rule

The chain rule can be iterated to account for multiple compositions. For example, suppose f, g, h are appropriately differentiable, then

$$
\frac{d}{d x}(f \circ g \circ h)(x)=\frac{d}{d x} f\left(g(h(x))=f^{\prime}\left(g(h(x)) g^{\prime}(h(x)) h^{\prime}(x)\right.\right.
$$

Note that the outermost function is f, and its inner function is a composition $g(h(x))$.

So the derivative of the outer function evaluated at the inner is $f^{\prime}(g(h(x))$ which is multiplied by the derivative of the inner function-itself based on the chain rule- $g^{\prime}(h(x)) h^{\prime}(x)$.

If $h(x)=v, g(v)=u$, and $y=f(u)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d v} \frac{d v}{d x}
$$

$$
\exp (u)=e^{u}
$$

Evaluate the derivative $\frac{d}{d x} \exp (\cot (\pi x))$

$$
\begin{array}{lll}
\exp (\cot (\pi x))=f(g(h(x))) & \text { if } & h(x)=\pi x=v \\
(\cot (\pi x)) & g(v)=\cot v=u \\
& f(u)=e^{u} \\
=e^{u} \cdot\left(-\csc ^{2} v\right) \cdot \pi & h^{\prime}(x)=\pi \\
=e^{\cot v}\left(-\csc ^{2} v\right) \cdot \pi & g^{\prime}(v)=-\csc ^{2} v \\
=-\csc ^{2}(\pi x) e^{\cot (\pi x)} \cdot \pi & f^{\prime}(u)=e^{u}
\end{array}
$$

$$
=-\pi \csc ^{2}(\pi x) e^{\cot (\pi x)}
$$

Exponential of Base a
Let $a>0$ with $a \neq 1$. By properties of logs and exponentials
$a^{x}=e^{(\ln a) x} . \quad(\ln a) x$ is the

$$
\begin{aligned}
& \text { If } g(x)=(\ln a) x, g^{\prime}(x)=\ln a \\
& f(u)=e^{u}, f^{\prime}(u)=e^{u} \\
& \frac{d}{d x} a^{x}=\frac{d}{d x} e^{(\ln a) x}=e^{(\ln a) x} \cdot \ln a=a^{x} \ln a=(\ln a) a^{x}
\end{aligned}
$$

Theorem: (Derivative of $y=a^{x}$) Let $a>0$ and $a \neq 1$. Then

$$
\frac{d}{d x} a^{x}=a^{x} \ln a
$$

Evaluate
(a) $\frac{d}{d x} 4^{x}=4^{x} \ln 4$
(b)

$$
\begin{aligned}
\frac{d}{d x} 2^{\cos x} & =\left(2^{u} \ln 2\right)(-\sin x) & \text { If } u=g(x)=\cos x \\
& \left.=2^{\cos x}(x)=-\sin x\right)(-\sin x) & f(u)=2^{u} \\
& =-(\ln 2) \sin x 2^{\cos x} & f^{\prime}(u)=2^{u} \ln 2
\end{aligned}
$$

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

The chain rule states that for a differentiable composition $f(g(x))$

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

For $y=f(u)$ and $u=g(x)$

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Example
Assume f is a differentiable function of x. Find an expression for the derivative:

$$
\frac{d}{d x}(f(x))^{2}=2 f(x) \cdot f^{\prime}(x) \quad \begin{aligned}
& \text { Inside is } f(x) \\
& \text { outride is } u^{2}
\end{aligned}
$$

$$
\frac{d}{d x} \tan (f(x))=\sec ^{2}(f(x)) \cdot f^{\prime}(x)
$$

Inside $f(x)$ outside is $\tan (u)$

Example
Suppose we know that $y=f(x)$ for some differentiable function (but we don't know exactly what f is). Find an expression for the derivative.

$$
\begin{aligned}
& \frac{d}{d x} y^{3}=3 y^{2} \cdot \frac{d y}{d x} \quad \begin{array}{r}
\text { Inside is } y \\
\text { outside is } u^{3}
\end{array} \\
& \text { "3 times } y^{2} \text { tines } \frac{d y}{d x}
\end{aligned} \begin{aligned}
& \begin{aligned}
\frac{d}{d x} x^{2} y^{2} & =\left(\frac{d}{d x} x^{2}\right) y^{2}+x^{2}\left(\frac{d}{d x} y^{2}\right) \\
& =2 x y^{2}+x^{2}\left(2 y \cdot \frac{d y}{d x}\right)
\end{aligned} \\
& \begin{aligned}
\text { product } & =2 x y^{2}+2 x^{2} y \frac{d y}{d x}
\end{aligned} \text { Product rule } \\
& x^{2} \text { times } y^{2}
\end{aligned}
$$

product cue.

Implicitly defined functions

A relation-an equation involving two variables x and y-such as

$$
x^{2}+y^{2}=16 \text { or }\left(x^{2}+y^{2}\right)^{3}=x^{2}
$$

implies that y is defined to be one or more functions of x.

$$
\text { e.g. } x^{2}+y^{2}=16 \Rightarrow y^{2}=16-x^{2}
$$

$$
\begin{aligned}
\Rightarrow y= & \sqrt{16-x^{2}} \text { OR } y=-\sqrt{16-x^{2}} \\
& \text { a possible functions }
\end{aligned}
$$

Figure: $x^{2}+y^{2}=16$

Figure: $\left(x^{2}+y^{2}\right)^{3}=x^{2}$

Explicit -vs- Implicit
A function is defined explicitly when given in the form

$$
y=f(x)
$$

e.g. $y=\tan \left(x^{2}\right)$ or $\quad y=e^{2 x}$

A function is defined implicitly when it is given as a relation

$$
F(x, y)=C
$$

for constant C.
e. 8. $\quad x^{2}+y^{2}=16, \quad x^{2} y^{2}+\tan \left(x_{y}\right)=15$

Implicit Differentiation
Since $x^{2}+y^{2}=16$ implies that y is a function of x, we can consider it's derivative.

Find $\frac{d y}{d x}$ given $x^{2}+y^{2}=16$.
Start w the relation, tale the derivative $\frac{d}{d x}$, with respect to x, of both sides.

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(16) \\
& \frac{d}{d x} x^{2}+\frac{d}{d x} y^{2}=0 \\
& 2 x+2 y \cdot \frac{d y}{d x}=0
\end{aligned}
$$

Chain rule

$$
\frac{d}{d x} y^{2}=2 y \cdot \frac{d y}{d x}
$$

y-inside u^{2} - outside

Now solve for $\frac{d y}{d x}$
Note

$$
\frac{d}{d x} x^{2}=2 x \cdot \frac{d x}{d x}
$$

$$
=2 x \cdot 1
$$

$$
\begin{array}{rlr}
\partial y \frac{d y}{d x} & =-2 x \quad \text { Subtract } 2 x \\
\frac{d y}{d x} & =\frac{-2 x}{2 y} \quad & \text { Divide by } 2 y \\
& \Rightarrow \frac{d y}{d x}=\frac{-x}{y}
\end{array}
$$

$$
=2 x
$$

Show that the same result is obtained knowing

$$
y=\sqrt{16-x^{2}} \text { or } y=-\sqrt{16-x^{2}}
$$

Squame root rule: $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$

$$
\begin{aligned}
& \frac{d}{d x} y=\frac{d}{d x} \sqrt{16-x^{2}}=\frac{1}{2 \sqrt{16-x^{2}}} \cdot(0-2 x) \quad \\
& \quad \begin{array}{l}
\text { inside } \\
\text { outside }
\end{array} \\
& \frac{-2 x}{2 \sqrt{16-x^{2}}}=\frac{-x}{\sqrt{16-x^{2}}}=\frac{-x}{y}
\end{aligned}
$$

since $y=\sqrt{16-x^{2}}$

If $y=-\sqrt{16-x^{2}}$ then

$$
\begin{aligned}
\frac{d}{d x} y=\frac{d}{d x}\left(-\sqrt{16-x^{2}}\right) & =-\frac{d}{d x} \sqrt{16-x^{2}} \\
& =-\left(\frac{-x}{\sqrt{16-x^{2}}}\right) \\
& =\frac{-x}{-\sqrt{16-x^{2}}}=\frac{-x}{y}
\end{aligned}
$$

Example
Find $\frac{d y}{d x}$ given $\quad x^{2}-3 x y+y^{2}=y$.
Take $\frac{d}{d x}$ of both sides.

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}-3 x y+y^{2}\right)=\frac{d}{d x} y \\
& \frac{d}{d x} x^{2}-3 \frac{d}{d x}(x y)+\frac{d}{d x} y^{2}=\frac{d y}{d x} \\
& 2 x-3\left(1 \cdot y+x \frac{d y}{d x}\right)+2 y \cdot \frac{d y}{d x}=\frac{d y}{d x}
\end{aligned}
$$

isolate $\frac{d y}{d x}$ using algebra

$$
\begin{gathered}
2 x-3 y-3 x \frac{d y}{d x}+2 y \frac{d y}{d x}=\frac{d y}{d x} \quad \begin{array}{l}
\text { move } \frac{d y}{d x} \text { tums } \\
\text { to th left } \\
\text { and dele } \\
\text { others to } \\
\text { the right }
\end{array} \\
2 x-3 y-3 x \frac{d y}{d x}+2 y \frac{d y}{d x}-\frac{d y}{d x}=0 \quad 3 y-2 x \\
-3 x \frac{d y}{d x}+2 y \frac{d y}{d x}-\frac{d y}{d x}=3 y-2 x \\
\frac{d y}{d x}(-3 x+2 y-1)=3 y-2 x-2 x-3 x-1
\end{gathered}
$$

Finding a Derivative Using Implicit Differentiation:

- Take the derivative of both sides of an equation with respect to the independent variable.
- Use all necessary rules for differenting powers, products, quotients, trig functions, exponentials, compositions, etc.
- Remember the chain rule for each term involving the dependent variable (e.g. mult. by $\frac{d y}{d x}$ as required).
- Use necessary algebra to isolate the desired derivative $\frac{d y}{d x}$.

Example
Find $\frac{d y}{d x}$.

$$
\begin{gathered}
\sin (x+y)=2 x \\
\frac{d}{d x} \sin (x+y)=\frac{d}{d x}(2 x) \\
\cos (x+y) \cdot \frac{d}{d x}(x+y)=2 \\
\cos (x+y)\left(1+\frac{d y}{d x}\right)=2 \\
\cos (x+y) \cdot 1+\cos (x+y) \frac{d y}{d x}=2 \\
\cos (x+y) \frac{d y}{d x}=2-\cos (x+y)
\end{gathered}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2}{\cos (x+y)}-\frac{\cos (x+y)}{\cos (x+y)} \\
& =2 \sec (x+y)-1
\end{aligned}
$$

Example
Find $\frac{d S}{d r}$.

$$
\begin{aligned}
& e^{S r}+S=r^{2}+2 \\
& \frac{d}{d r}\left(e^{S r}+S\right)=\frac{d}{d r}\left(r^{2}+2\right) \\
& \frac{d}{d r} e^{S r}+\frac{d}{d r} S=2 r+0 \\
& e^{S r} \frac{d}{d r}(S r)+\frac{d S}{d r}=2 r \\
& \hat{T}_{\text {product }} \\
& e^{S r}\left(\frac{d S}{d r} r+S \cdot 1\right)+\frac{d S}{d r}=2 r
\end{aligned}
$$

Sis dependent like y
r is independent like x

$$
\begin{gathered}
e^{S r} \cdot r \frac{d S}{d r}+S e^{S r}+\frac{d S}{d r}=2 r \\
r e^{S r} \frac{d S}{d r}+\frac{d S}{d r}=2 r-S e^{S r} \\
\left(r e^{S r}+1\right) \frac{d S}{d r}=2 r-S e^{S r} \\
\frac{d S}{d r}=\frac{2 r-S e^{S r}}{r_{e}^{S r}+1}
\end{gathered}
$$

