Sept 26 Math 2306 sec. 53 Fall 2018

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0.$$
 Suppose e

-*

September 24, 2018

1/46

The equation has characteristic (also called auxiliary) equation

$$am^2 + bm + c = 0$$

The solutions to the ODE come in three different cases based on the roots of the characteristic equation.

Cases I & II: ay'' + by' + cy = 0

Case I: $b^2 - 4ac > 0$. The characteristic equation has two distinct real roots m_1 and m_2 . Then a fundamental solution set is

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$

and the general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.$$

Case II: $b^2 - 4ac = 0$. The characteristic equation has one repeated real root *m*. Then a fundamental solution set is

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$

and the general solution is

$$y = c_1 e^{mx} + c_2 x e^{mx}$$

September 24, 2018

2/46

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$
 $y = e^{\alpha x}(c_1 \cos(\beta x) + c_2 \sin(\beta x))$, where the roots $m = \alpha \pm i\beta$, $\alpha = \frac{-b}{2a}$ and $\beta = \frac{\sqrt{4ac - b^2}}{2a}$

The solutions can be written as

$$Y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} e^{i\beta x}$$
, and $Y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} e^{-i\beta x}$.

September 24, 2018 3 / 46

э

イロト イポト イヨト イヨト

Deriving the solutions Case III

Recall Euler's Formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$V_{i} = e^{dx} e^{i\beta x} = e^{dx} \left(C_{oi}(\beta x) + i Sin(\beta x) \right)$$

$$= e^{dx} C_{os}(\beta x) + i e^{dx} Sin(\beta x)$$

$$V_{i} = e^{dx} e^{i\beta x} = e^{dx} \left(C_{os}(\beta x) - i Sin(\beta x) \right)$$

$$= e^{dx} C_{os}(\beta x) - i e^{dx} Sin(\beta x)$$

September 24, 2018 4 / 46

<ロト <回 > < 回 > < 回 > < 回 > … 回

Let

$$y_{1} = \frac{1}{2} \left(Y_{1} + Y_{2} \right) = \frac{1}{2} \left(\partial e^{dx} \operatorname{Cor}(px) \right) = e^{dx} \operatorname{Cor}(px)$$

$$y_{2} = \frac{1}{2i} \left(Y_{1} - Y_{2} \right) = \frac{1}{2i} \left(\partial i e^{dx} \operatorname{Sin}(px) \right) = e^{dx} \operatorname{Sin}(px)$$
So our fundomental solution set will be

$$y_1 = e^{ix} C_{0,1}(\beta x)$$
, $y_2 = e^{ix} Sin(\beta x)$

Solve the ODE

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0$$

Characteristic eqn. $m^2 + 4m + 6 = 0$
Completing the square
 $m^2 + 4m + 4 - 4 + 6 = 0$
 $(m+2)^2 + 2 = 0$
 $(m+2)^2 = -2$
 $m+2 = \pm \sqrt{2}$ i

◆□→ ◆圖→ ◆理→ ◆理→ ○理

$$M = -2 \pm \sqrt{2} i \qquad M = q \pm i\beta$$
So $q = -2$ and $\beta = \sqrt{2}$

$$X_{1} = e^{-2t} C_{or}(\sqrt{2}t) \qquad cnd \qquad X_{2} = e^{-2t} Sin(\sqrt{2}t)$$
The general solution is
$$X = C_{1} e^{-2t} C_{os}(\sqrt{2}t) + C_{2} e^{-2t} Sin(\sqrt{2}t)$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an nth order equation, we obtain an nth degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions e^{αx} cos(βx) and e^{αx} sin(βx).
- If a root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

 $e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), xe^{\alpha x}\cos(\beta x), xe^{\alpha x}\sin(\beta x), \dots,$

 $x^{k-1}e^{\alpha x}\cos(\beta x), x^{k-1}e^{\alpha x}\sin(\beta x)$

September 24, 2018

8/46

It may require a computer algebra system to find the roots for a high degree polynomial.

Example

Solve the ODE

$$y''' - 4y' = 0$$

$$m^{3}e^{mx} - 4ne^{mx} = 0$$
 (her. eqn.
 $e^{mx}(m^{3} - 4m) = 0 \Rightarrow m^{3} - 4m = 0$

$$y_{1} = e^{0x} = 1$$
$$y_{2} = e^{2x}$$
$$y_{3} = e^{2x}$$

September 24, 2018 9 / 46

◆□→ ◆圖→ ◆理→ ◆理→ ○理

The general solution is

$$y = C_1 + C_2 = C_1 + C_3 = C_1$$