Sept 26 Math 2306 sec. 53 Fall 2018

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0 . \quad \operatorname{suf} p^{0 v^{x}} y=e^{m x}
$$

The equation has characteristic (also called auxiliary) equation

$$
a m^{2}+b m+c=0
$$

The solutions to the ODE come in three different cases based on the roots of the characteristic equation.

Cases I \& II: $a y^{\prime \prime}+b y^{\prime}+c y=0$

Case I: $b^{2}-4 a c>0$. The characteristic equation has two distinct real roots m_{1} and m_{2}. Then a fundamental solution set is

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x}
$$

and the general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} .
$$

Case II: $b^{2}-4 a c=0$. The characteristic equation has one repeated real root m. Then a fundamental solution set is

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x}
$$

and the general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x} .
$$

Case III: Complex conjugate roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0 \\
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right), \quad \text { where the roots } \\
m=\alpha \pm i \beta, \quad \alpha=\frac{-b}{2 a} \quad \text { and } \quad \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
\end{gathered}
$$

The solutions can be written as

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

Deriving the solutions Case III
Recall Euler's Formula:

$$
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta \\
& Y_{1}=e^{\alpha x} e^{i \beta x}=e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
&=e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) \\
& U_{2}=e^{\alpha x} e^{-i \beta x}=e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
&=e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

Let

$$
\begin{aligned}
& y_{1}=\frac{1}{2}\left(Y_{1}+Y_{2}\right)=\frac{1}{2}\left(\partial e^{\alpha x} \cos (\beta x)\right)=e^{\alpha x} \cos (\beta x) \\
& y_{2}=\frac{1}{2 i}\left(Y_{1}-Y_{2}\right)=\frac{1}{2 i}\left(2 i e^{\alpha x} \sin (\beta x)\right)=e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

So our fundomentd solution sat will be

$$
y_{1}=e^{\alpha x} \cos (\beta x), y_{2}=e^{\alpha x} \sin (\beta x)
$$

Example
Solve the ODE

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0
$$

Charaltaistic eqn. $\quad m^{2}+4 m+6=0$
Completing the square

$$
\begin{aligned}
m^{2}+4 m+4-4+6 & =0 \\
(m+2)^{2}+2 & =0 \\
(m+2)^{2} & =-2 \\
m+2 & = \pm \sqrt{-2}= \pm \sqrt{2} i
\end{aligned}
$$

$$
\begin{gathered}
m=-2 \pm \sqrt{2} i \quad m=\alpha \pm i \beta \\
\text { So } \alpha=-2 \text { and } \beta=\sqrt{2} \\
x_{1}=e^{-2 t} \cos (\sqrt{2} t) \text { and } x_{2}=e^{-2 t} \sin (\sqrt{2} t)
\end{gathered}
$$

The general solution is

$$
x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$.
- If a root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- It may require a computer algebra system to find the roots for a high degree polynomial.

Example
Solve the ODE

$$
\text { Let } y=e^{m x} \quad y^{\prime}=m e^{m x} \quad y^{\prime \prime}=m^{2} e^{m x} \quad y^{\prime \prime \prime}=m^{3} e^{m x}
$$

$$
y^{\prime \prime \prime}-4 y^{\prime}=0
$$

$$
m^{3} e^{m x}-4 m e^{m x}=0 \quad \text { Char.eqn. }
$$

$$
e^{m x}\left(m^{3}-4 m\right)=0 \Rightarrow m^{3}-4 m=0
$$

$$
m\left(m^{2}-4\right)=0 \Rightarrow m(m-2)(m+2)=0
$$

$$
m_{1}=0, m_{2}=2, m_{3}=-2
$$

$$
\begin{aligned}
& y_{1}=e^{0 x}=1 \\
& y_{2}=e^{2 x} \\
& y_{3}=e^{-2 x}
\end{aligned}
$$

The geneal solution is

$$
y=c_{1}+c_{2} e^{2 x}+c_{3} e^{-2 x}
$$

