September 26 Math 2306 sec. 57 Fall 2017

Section 8: Homogeneous Equations with Constant Coefficients

We're considering second order, linear, homogeneous equations with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

We sought solutions of the form $y=e^{m x}$ and derived an associated characteristic (a.k.a. auxiliary equation) for m

$$
a m^{2}+b m+c=0 .
$$

Three cases have to be considered regarding the roots of this equation.

Case I: Two distinct real roots

From $a m^{2}+b m+c=0$, if $b^{2}-4 a c>0$, there are two different real number roots

$$
m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

giving two linearly independent solutions

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x}
$$

for a general solution

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} .
$$

Case II: One repeated real root

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0 \\
y=c_{1} e^{m x}+c_{2} x e^{m x} \quad \text { where } \quad m=\frac{-b}{2 a}
\end{gathered}
$$

Use reduction of order to show that if $y_{1}=e^{\frac{-b x}{2 a}}$, then $y_{2}=x e^{\frac{-b x}{2 a}}$. $y_{2}=u y_{1}$ when e $u=\int \frac{e^{-\int P(x) d x}}{\left(y_{1}\right)^{2}} d x$

Stander d form:

$$
-\int \rho(x) d x=-\int \frac{b}{a} d x=-\frac{b}{a} x \quad \text { s. } e^{-\int \rho(x) d y}=e^{-\frac{b}{a} x}
$$

$$
\begin{aligned}
u & \left.=\int \frac{e^{-\int \rho_{(x)} d x}}{\left(y_{1}\right)^{2}} d x=\int \frac{e^{\frac{-b}{a} x}}{\left(e^{-\frac{b}{2 a} x}\right)^{2}} d x\left(e^{\frac{-b}{2 a} x}\right)^{2}=e^{2\left(\frac{-b}{2 a} x\right.}\right) \\
& =\int \frac{e^{\frac{-b}{a} x}}{e^{\frac{-b}{a} x}} d x=\int d x=x \\
y_{2} & =u y_{1}=x e^{\frac{-b}{2 a} x}
\end{aligned}
$$

Example

Solve the ODE

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Charcdeirtic egn: $\quad 4 m^{2}-4 m a+1=0 \Rightarrow(2 m-1)^{2}=0$ $m=\frac{1}{2}$ repeated

$$
y_{1}=e^{\frac{1}{2} x}, y_{2}=x e^{\frac{1}{2} x}
$$

The gevecel solution is

$$
y=c_{1} e^{\frac{1}{2} x}+c_{2} x e^{\frac{1}{2} x}
$$

Case III: Complex conjugate roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0 \\
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right), \quad \text { where the roots } \\
m=\alpha \pm i \beta, \quad \alpha=\frac{-b}{2 a} \quad \text { and } \quad \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
\end{gathered}
$$

The solutions can be written as

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

Deriving the solutions Case III
Recall Euler's Formula:

$$
\begin{aligned}
Q_{1}=e^{\alpha x} e^{i \beta x} & =e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) \\
Y_{2}=e^{\alpha x} e^{-i \beta x} & =e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

Set

$$
\begin{aligned}
y_{1}=\frac{1}{2}\left(Y_{1}+Y_{2}\right) & =\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)+0\right) \\
& =e^{\alpha x} \cos (\beta x)
\end{aligned}
$$

and

$$
\begin{aligned}
y_{2} & =\frac{1}{2 i}\left(Y_{1}-y_{2}\right)=\frac{1}{2 i}\left(0+2 i e^{\alpha y} \sin (\beta x)\right) \\
& =e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

These an linear', independent.
The gen. son is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\rho x)
$$

Example
Solve the ODE

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0
$$

Chore eau $m^{2}+4 m+6=0$

$$
\begin{aligned}
& x_{1}=e^{-2 t} \cos (\sqrt{2} t) \\
& x_{2}=e^{-2 t} \sin (\sqrt{2} t) \\
& \text { The geneerd soln } i s \\
& x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 1 \cdot 6}}{2 \cdot 1} \\
&=\frac{-4 \pm \sqrt{-8}}{2} \\
&=\frac{-4 \pm 2 \sqrt{2} i}{2} \\
&=-2 \pm \sqrt{2} i \\
& \alpha=-2 \\
& \beta=\sqrt{2}
\end{aligned}
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$.
- If a root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- It may require a computer algebra system to find the roots for a high degree polynomial.

Example
Cheraduistic eqn $m^{3}-4 m=0$

$$
\begin{aligned}
& \text { Solve the ODE Cheradeictic eqn } \\
& \begin{array}{ll}
y^{\prime \prime \prime}-4 y^{\prime}=0 & m\left(m^{2}-4\right)=0 \\
m(m-2)(m+2)=0 \\
y_{1}=e^{0 x}=1, y_{2}=e^{2 x}, y_{3}=e^{-2 x} & m,=0, m_{2}=2, m_{3}=-2 .
\end{array}
\end{aligned}
$$

The geveral solution is

$$
y=c_{1}+c_{2} e^{2 x}+c_{3} e^{-2 x}
$$

Example

Solve the ODE

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Chare. eq

$$
\begin{gathered}
m^{3}-3 m^{2}+3 m-1=0 \\
(m-1)^{3}=0
\end{gathered}
$$

$m=1$, triple root

$$
y_{1}=e^{x}, y_{2}=x e^{x}, y_{3}=x^{2} e^{x}
$$

Genued solution

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

well guess that bp matches the "form" of $g(x)=8 x+1$. is a line, so well guess
that $y_{p}=A x+B$ for som constants Aond B.

$$
y_{p}^{\prime}=A, \quad y_{p}^{\prime \prime}=0
$$

so $\quad y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=0-4(A)+4(A x+B)=8 x+1$
A and B should satisfy

$$
\begin{array}{r}
-4 A+4 A x+4 B=8 x+1 \\
4 A x+(-4 A+4 B)=8 x+1
\end{array}
$$

Matching coefficients

$$
\begin{gathered}
4 A=8 \text { and }-4 A+4 \beta=1 \\
A=2 \Rightarrow 4 B=1+4 A=1+4 \cdot 2=9 \\
B=\frac{9}{4}
\end{gathered}
$$

So it works with $y_{p}=2 x+\frac{9}{4}$

Check $y_{p}=2 x+\frac{9}{4}, y_{p}^{\prime}=2, \quad y_{p}^{\prime \prime}=0$

$$
\begin{aligned}
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p} & =0-4(2)+4\left(2 x+\frac{9}{4}\right) \\
& =-8+8 x+9 \\
& =8 x+1
\end{aligned}
$$

