September 21 Math 3260 sec. 57 Fall 2017

Section 3.1: Introduction to Determinants

Let $n \geq 2$. For an $n \times n$ matrix A, let $A_{i j}$ denote the $(n-1) \times(n-1)$ matrix obtained from A by deleting the $i^{\text {th }}$ row and the $j^{\text {th }}$ column of A.

Definition: Minor The $i, j^{t h}$ minor of the $n \times n$ matrix A is the number

$$
M_{i j}=\operatorname{det}\left(A_{i j}\right)
$$

Definition: Cofactor Let A be an $n \times n$ matrix with $n \geq 2$. The $i, j^{\text {th }}$ cofactor of A is the number

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

Example
Find the three minors M_{11}, M_{12}, M_{13} and find the 3 cofactors C_{11}, C_{12}, C_{13} of the matrix

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] . \quad A_{11}=\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right] \\
& M_{11}=\operatorname{dt}\left(A_{11}\right)=a_{22} a_{33}-a_{32} a_{23} \\
& C_{11}=(-1)^{1+1} M_{11}=M_{11}=a_{22} a_{33}-a_{32} a_{23} \\
& A_{12}=\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right] \begin{array}{l}
M_{12}=\operatorname{dt}\left(A_{12}\right)=a_{21} a_{33}-a_{31} a_{23} \\
C_{12}=(-1)^{1+2} M_{12}=-\left(a_{21} a_{33}-a_{31} a_{23}\right)
\end{array}
\end{aligned}
$$

(Example Continued...)

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \cdot \quad A_{13}=\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \\
M_{13}=\operatorname{dt}\left(A_{13}\right)=a_{21} a_{32}-a_{31} a_{22} \\
C_{13}=(-1)^{1+3} M_{13}=a_{21} a_{32}-a_{31} a_{22}
\end{gathered}
$$

Observation:

Comparison with the determinant of the 3×3 matrix, we can note that

$$
\begin{aligned}
\Delta= & a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \\
& =a_{11} c_{11}+a_{12} c_{12}+a_{13} c_{13}
\end{aligned}
$$

Definition: Determinant

For $n \geq 2$, the determinant of the $n \times n$ matrix $A=\left[a_{i j}\right]$ is the number

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} M_{1 j}
\end{aligned}
$$

(Well call such a sum a cofactor expansion.)

Example: Evaluate the determinant

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right] \\
& \operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
&=(-1) \operatorname{dt}\left(\left[\begin{array}{ll}
1 & 2 \\
0 & 6
\end{array}\right]\right)-3 \operatorname{det}\left(\left[\begin{array}{cc}
-2 & 2 \\
3 & 6
\end{array}\right]\right)+0 \operatorname{det}\left(\left[\begin{array}{cc}
-2 & 1 \\
3 & 0
\end{array}\right]\right) \\
&=-6-3(-18)+0=-6+54=48
\end{aligned}
$$

Theorem:
The determinant of an $n \times n$ matrix can be computed by cofactor expansion across any row or down any column.

Example: Find the determinant of the matrix

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
-1 & 3 & 4 & 0 \\
0 & 0 & -3 & 0 \\
-2 & 1 & 2 & 2 \\
3 & 0 & -1 & 6
\end{array}\right] \quad \begin{array}{c}
\text { well do a cofactor expansion } \\
\text { across } \\
\text { row } 2 .
\end{array} \\
\operatorname{det}(A)=a_{21} C_{21}+a_{22} C_{22}+a_{23} C_{23}+a_{24} C_{24} \\
0^{\prime \prime} \\
0^{\prime \prime}
\end{gathered}
$$

$$
\operatorname{det}(A)=(-3)(-48): 144
$$

Triangular Matrices

Definition:

The $n \times n$ matrix $A=\left[a_{i j}\right]$ is said to be upper triangular if $a_{i j}=0$ for all $i>j$. It is said to be lower triangular if $a_{i j}=0$ for all $j>i$. A matrix that is both upper and lower triangular is diagonal.

Theorem: For $n \geq 2$, the determinant of an $n \times n$ triangular matrix is the product of its diagonal entries. (i.e. if $A=\left[a_{i j}\right]$ is triangular, then $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$.)

Example

$$
A=\left[\begin{array}{ccccc}
-1 & 3 & 4 & 0 & 2 \\
0 & 2 & -3 & 0 & -4 \\
0 & 0 & 3 & 7 & 5 \\
0 & 0 & 0 & -4 & 6 \\
0 & 0 & 0 & 0 & 6
\end{array}\right] \quad \begin{aligned}
\operatorname{det}(A) & =(-1) \cdot 2 \cdot 3 \cdot(-4) \cdot 6 \\
& =144
\end{aligned}
$$

$$
A=\left[\begin{array}{cccc}
7 & 0 & 0 & 0 \\
3 & 6 & 0 & 0 \\
0 & -1 & 2 & 0 \\
4 & 2 & 2 & 2
\end{array}\right]
$$

$$
\operatorname{det}(A)=7 \cdot 6 \cdot 2 \cdot 2=168
$$

Section 3.2: Properties of Determinants

Theorem: Let A be an $n \times n$ matrix, and suppose the matrix B is obtained from A by performing a single elementary row operation ${ }^{1}$. Then
(i) If B is obtained by adding a multiple of a row of A to another row of A (row replacement), then

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

(ii) If B is obtained from A by swapping any pair of rows (row swap), then

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

(iii) If B is obtained from A by scaling any row by the constant k (scaling), then

$$
\operatorname{det}(B)=k \operatorname{det}(A)
$$

[^0]Example: Compute the Determinant

$$
\begin{gathered}
\left|\begin{array}{cccc}
0 & 1 & 2 & -1 \\
2 & 5 & -7 & 3 \\
0 & 3 & 6 & 2 \\
-2 & -5 & 4 & -2
\end{array}\right| \\
R_{1} \leftrightarrow R_{2} \\
{\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 3 & 6 & 2 \\
-2 & -5 & 4 & -2
\end{array}\right]} \\
R_{1}+R_{4} \rightarrow R_{4}
\end{gathered}
$$

Lets create on echelon form and find the determinant from it.

Changes
swap -1
replace noeffect replou no effect sweep -1

$$
\begin{gathered}
{\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 3 & 6 & 2 \\
0 & 0 & -3 & 1
\end{array}\right]} \\
-3 R_{2}+R_{3} \rightarrow R_{3} \\
{\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & -3 & 1
\end{array}\right]} \\
R_{3} \rightarrow R_{4}
\end{gathered}
$$

$$
\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & 5
\end{array}\right] \quad \begin{aligned}
& \text { If this is } \quad \beta \text { then } \\
& \operatorname{det}(\beta)=2 \cdot 1 \cdot(-3) \cdot 5 \\
&=-30
\end{aligned}
$$

For our orisind natriy A

$$
\operatorname{det}(A)=\frac{\operatorname{det}(B)}{(-1)(-1)}=-30
$$

Some Theorems:

Theorem: The $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem: For $n \times n$ matrix $A, \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Theorem: For $n \times n$ matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Example
Show that if A is an $n \times n$ invertible matrix, then

$$
\begin{aligned}
& \qquad \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)} \\
& \text { A invertible } \Rightarrow \operatorname{det}(A) \neq 0, \quad \text { Note } \quad \operatorname{det}\left(I_{n}\right)=1 \\
& I=A A^{-1} \Rightarrow \operatorname{det}(I)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)
\end{aligned}
$$

Hens $1=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$
So $\frac{1}{\operatorname{det}(A)}=\operatorname{det}\left(A^{-1}\right)$

Example
Let A be an $n \times n$ matrix, and suppose there exists invertible matrix P such that

$$
B=P^{-1} A P .
$$

Show that

$$
\begin{gathered}
\operatorname{det}(B)=\operatorname{det}(A) . \\
\operatorname{det}(B)=\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A P)=\underbrace{\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A)}_{\text {Scalars }} \operatorname{det}(P) \\
\text { So } \operatorname{det}(B)=\underbrace{\operatorname{det}\left(P^{-1}\right)}_{1^{\prime \prime}} \operatorname{det}(P) \operatorname{det}(A) \\
\Rightarrow \quad \operatorname{det}(B)=\operatorname{det}(A) .
\end{gathered}
$$

Section 4.1: Vector Spaces and Subspaces

Definition A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms: For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The sum $\mathbf{u}+\mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $\mathbf{1 u}=\mathbf{u}$

Remarks

- V is more accurately called a real vector space when we assume that the relevant scalars are the real numbers.
- Property 1 . is that V is closed under (a.k.a. with respect to) vector addition.
- Property 6. is that V is closed under scalar multiplication.
- A vector space has the same basic structure as \mathbb{R}^{n}
- These are axioms. We assume (not "prove") that they hold for vector space V. However, they can be used to prove or disprove that a given set (with operations) is actually a vector space.

Examples of Vector Spaces

For an integer $n \geq 0, \mathbb{P}_{n}$ denotes the set of all polynomials with real coefficients of degree at most n. That is

$$
\mathbb{P}_{n}=\left\{\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n} \mid p_{0}, p_{1}, \ldots, p_{n} \in \mathbb{R}\right\}
$$

where addition ${ }^{2}$ and scalar multiplication are defined by

$$
\begin{gathered}
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t+\cdots+\left(p_{n}+q_{n}\right) t^{n} \\
(c \mathbf{p})(t)=c \mathbf{p}(t)=c p_{0}+c p_{1} t+\cdots+c p_{n} t^{n}
\end{gathered}
$$

$$
{ }^{2} \mathbf{q}(t)=q_{0}+q_{1} t+\cdots+q_{n} t^{n}
$$

Example
What is the zero vector $\mathbf{0}$ in \mathbb{P}_{n} ?
we reed $\overrightarrow{0}+\vec{p}=\vec{p}$ for each \vec{p} in \mathbb{P}_{n}
Let $\tilde{0}=a_{0}+a_{1} t+\ldots+a_{n} t^{n}$

$$
\begin{gathered}
(\overrightarrow{0}+\vec{p})(t)=\vec{O}(t)+\vec{p}(t)=\left(a_{0}+p_{0}\right)+\left(a_{1}+p_{1}\right) t+\ldots+\left(a_{n}+p_{n}\right) t^{n} \\
=p_{0}+p_{1} t+p_{2} t^{2}+\ldots+p_{n} t^{n}
\end{gathered}
$$

This requires $a_{0}: a_{1}=\ldots=a_{n}=0$
So

$$
\stackrel{\rightharpoonup}{0}=0+0 t+0 t^{2}+\ldots+0 \hat{t}^{n}=0 .
$$

Example
If $\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n}$, what is the vector $-\mathbf{p}$?
we need $\vec{p}+(-\vec{p})=\overrightarrow{0}$
Let $-\vec{p}=b_{0}+b_{1} t+b_{2} t^{2}+\ldots+b_{n} t^{n}$

Then

$$
\begin{aligned}
(\vec{p}+(-\vec{p}))(t) & =\vec{p}(t)+(-\vec{p})(t) \\
& =\left(p_{0}+b_{0}\right)+\left(p_{1}+b_{1}\right) t+\ldots+\left(p_{n}+b_{n}\right) t^{n}
\end{aligned}
$$

we need $p_{i}+b_{i}=0$ for each $i=0, \ldots, n$ So $b_{i}=-p_{i}$

$$
-\vec{p}(t)=-p_{0}-p_{1} t-\cdots-p_{n} t^{n}
$$

Examples of Vector Spaces

Let V be the set of all differentiable, real valued functions $f(x)$ defined for $-\infty<x<\infty$ with the property that

$$
f(0)=0
$$

Define vector addition and scalar multiplication in the standard way for functions-i.e.

$$
(f+g)(x)=f(x)+g(x), \quad \text { and } \quad(c f)(x)=c f(x)
$$

Example
Verify that properties 1 . and 6 . hold.
If f and g are differntichle, then $f+g$ and $o f$ are differentiable.
Suppose fond δ are in our space so that

$$
f(0)=0 \quad \text { and } \quad \delta(0)=0 \text {. }
$$

Thou $(f+g)(0)=f(0)+g(0)=0+0=0$.
So the set is closed under vector ad dition.

Also $(c f)(0)=c f(0)=c \cdot 0=0$
Hence the set is closed under Scolan multiplication.

A set that is not a Vector Space
Let $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right], \mid x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}. Note V is the third quadrant in the $x y$-plane.
(1) Does property 1. hold for V ?

Suppose $\left[\begin{array}{l}x \\ b\end{array}\right],\left[\begin{array}{l}v \\ v\end{array}\right]$ ane in V so that $x \leq 0, y \leq 0$, $u \leq 0, v \leq 0$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
x+u \\
y+v
\end{array}\right]
$$

But

$$
x+u \leq 0
$$

and $y+v \leq 0$
so this is in V.
V is closed under this addition.

A set that is not a Vector Space
Let $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right], \mid x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}. Note V is the third quadrant in the $x y$-plane.
(2) Does property 6 . hold for V ?

No. Note $\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ is in V but
(-1) $\left[\begin{array}{l}-1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is not in V.
V is not closed under scaler multiplication.

[^0]: "If "row" is replaced by "column" in any of the operations, the conclusions still follow.

