September 21 Math 3260 sec. 58 Fall 2017

Section 3.1: Introduction to Determinants

Recall that a 2×2 matrix is invertible if and only if the number called its **determinant** is nonzero. We had

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

We wish to extend the concept of determinant to $n \times n$ matrices in general. And we wish to do so in such a way that invertibility holds if and only if the determinant is nonzero.

Determinant 3×3 case:

Suppose we start with a 3 × 3 invertible matrix. And suppose that $a_{11} \neq 0$. We can multiply the second and third rows by a_{11} and begin row reduction.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \sim \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11}a_{21} & a_{11}a_{22} & a_{11}a_{23} \\ a_{11}a_{31} & a_{11}a_{32} & a_{11}a_{33} \end{bmatrix} \sim \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11}a_{31} & a_{11}a_{32} & a_{11}a_{33} \end{bmatrix}$$

Determinant 3×3 case continued...

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{11}a_{22} - a_{12}a_{21} & a_{11}a_{23} - a_{13}a_{21} \\ 0 & a_{11}a_{32} - a_{12}a_{31} & a_{11}a_{33} - a_{13}a_{31} \end{bmatrix}$$

If $A \sim I$, one of the entries in the 2, 2 or the 3, 2 position must be nonzero. Let's assume it is the 2, 2 entry. Continue row reduction to get

$$A \sim \left[egin{array}{ccc} a_{11} & a_{12} & a_{13} \ 0 & a_{11}a_{22} - a_{12}a_{21} & a_{11}a_{23} - a_{13}a_{21} \ 0 & 0 & a_{11}\Delta \end{array}
ight]$$

Again, if *A* is invertible, it must be that the bottom right entry is nonzero. That is

$$\Delta \neq 0.$$

Note that if $\Delta = 0$, the rref of *A* is not *I*—*A* would be singular.

Determinant 3×3 case continued...

With a little rearrangement, we have

$$\Delta = a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

The number Δ will be called the **determinant** of *A*.

September 26, 2017 4 / 61

イロト 不得 トイヨト イヨト 二日

Definitions: Minors

Let $n \ge 2$. For an $n \times n$ matrix A, let A_{ij} denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting the i^{th} row and the j^{th} column of A.

For example, if

$$A = \begin{bmatrix} -1 & 3 & 2 & 0 \\ 4 & 4 & 0 & -3 \\ -2 & 1 & 7 & 2 \\ 3 & 0 & -1 & 6 \end{bmatrix} \text{ then } A_{23} = \begin{bmatrix} -1 & 3 & 0 \\ -2 & 1 & 2 \\ 3 & 0 & 6 \end{bmatrix}$$

Definition: The *i*, *j*th **minor** of the $n \times n$ matrix *A* is the number

$$M_{ij} = \det(A_{ij}).$$

September 26, 2017

5/61

Definitions: Cofactor

Definition: Let *A* be an $n \times n$ matrix with $n \ge 2$. The *i*, *j*th **cofactor** of *A* is the number

$$C_{ij}=(-1)^{i+j}M_{ij}.$$

Example: Find the three minors M_{11} , M_{12} , M_{13} and find the 3 cofactors C_{11} , C_{12} , C_{13} of the matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}. \qquad A_{II} = \begin{bmatrix} a_{I1} & a_{I2} & a_{I3} \\ a_{II} & a_{II} & a_{II} & a_{II} \end{bmatrix}. \qquad A_{II} = \begin{bmatrix} a_{I1} & a_{II} & a_{II} \\ a_{II} & a_{II} & a_{II} \\ a_{II} & a_{II} & a_{II} \end{bmatrix}.$$

$$C_{11} = (-1)^{17} M_{11} = A_{22} A_{33} - G_{32} A_{23}$$

(Example Continued...)

 $A_{12} = \begin{cases} A_{21} & A_{23} \\ A_{31} & A_{33} \end{cases}$ $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$ $M_{12} = Q_{21} Q_{33} - Q_{31} Q_{23}$ $C_{12} = (-1) M_{12} = -(Q_{21} G_{33} - G_{31} G_{23})$ $A_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & G_{32} \end{vmatrix} \qquad M_{13} = d_{21}(A_{13}) = a_{21}G_{32} - G_{31}G_{22}$ $C_{13} = (-1)^{1+3} M_{13} = Q_{21} Q_{32} - Q_{31} Q_{22}$

> < □ ▶ < 圕 ▶ < 팉 ▶ < 팉 ▶ 三 の Q (?) September 26, 2017 7 / 61

Observation:

Comparison with the determinant of the 3×3 matrix, we can note that

$$\Delta = a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$
$$= a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

September 26, 2017

э

9/61

Definition: Determinant

For $n \ge 2$, the **determinant** of the $n \times n$ matrix $A = [a_{ij}]$ is the number

$$det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j}M_{1j}$$

イロト イポト イヨト イヨト

September 26, 2017

10/61

(Well call such a sum a cofactor expansion.)

Example: Evaluate the determinant

$$A = \begin{bmatrix} -1 & 3 & 0 \\ -2 & 1 & 2 \\ 3 & 0 & 6 \end{bmatrix} \qquad d_{2}k(A) = a_{11}C_{11} + a_{12}C_{11} + a_{13}C_{12} \\ = (-1)d_{1}\left(\begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix} \right) + 3(-1)d_{2}k\left(\begin{bmatrix} -2 & 2 \\ 3 & 6 \end{bmatrix} \right) + 0 \cdot d_{2}k\left(\begin{bmatrix} -2 & 1 \\ 3 & 0 \end{bmatrix} \right) \\ = -1\left((1 \cdot 6 - 0 \cdot 2) - 3(-2 \cdot 6 - 3 \cdot 2) + 0 \\ = -6 - 3(-18) = -6 + 54 = 48 \end{bmatrix}$$

September 26, 2017 11 / 61

2

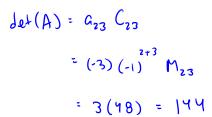
イロン イ理 とく ヨン イヨン

Theorem:

The determinant of an $n \times n$ matrix can be computed by cofactor expansion across any row or down any column.

Example: Find the determinant of the matrix

.



Triangular Matrices

The $n \times n$ matrix $A = [a_{ij}]$ is said to be **upper triangular** if $a_{ij} = 0$ for all i > j. It is said to be **lower triangular** if $a_{ij} = 0$ for all j > i. A matrix that is both upper and lower triangular is **diagonal**.

Theorem: For $n \ge 2$, the determinant of an $n \times n$ triangular matrix is the product of its diagonal entries. (i.e. if $A = [a_{ij}]$ is triangular, then $det(A) = a_{11}a_{22}\cdots a_{nn}$.)

イロト 不得 トイヨト イヨト ヨー ろくの

Example

$$A = \begin{bmatrix} -1 & 3 & 4 & 0 & 2 \\ 0 & 2 & -3 & 0 & -4 \\ 0 & 0 & 3 & 7 & 5 \\ 0 & 0 & 0 & -4 & 6 \\ 0 & 0 & 0 & 0 & 6 \end{bmatrix} \qquad \exists \forall \forall \forall$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

15/61

Section 3.2: Properties of Determinants

Theorem: Let *A* be an $n \times n$ matrix, and suppose the matrix *B* is obtained from *A* by performing a single elementary row operation¹. Then

(i) If *B* is obtained by adding a multiple of a row of *A* to another row of *A* (row replacement), then

 $\det(B) = \det(A).$

(ii) If *B* is obtained from *A* by swapping any pair of rows (row swap) , then

$$\det(B) = -\det(A).$$

(iii) If *B* is obtained from *A* by scaling any row by the constant *k* (scaling), then

$$\det(B) = k \det(A).$$

 $^{^1}$ If "row" is replaced by "column" in any of the operations, the conclusions still follow. $_\odot$

Example: Compute the Determinant

$$\begin{vmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{vmatrix}$$

$$k_{1} + k_{y} > k_{y}$$

$$Lt'c call the matrix A ad do
row matrix A ad do
row reduction to on ref T3.
$$\frac{Chargeo}{row subop} fodor -1$$

$$replacament no effect
replacament no effect
row sweep fodor -1$$$$

September 26, 2017 17 / 61

2

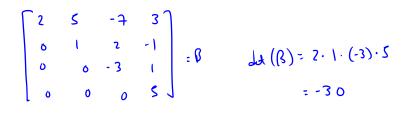
イロト イヨト イヨト イヨト

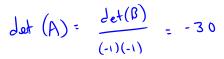
 $\begin{bmatrix}
2 & 5 & -7 & 3 \\
6 & 1 & 2 & -1 \\
0 & 3 & 6 & 2 \\
0 & 0 & -3 & 1
\end{bmatrix}$ -3R2 + R3 - R3

 $\begin{bmatrix} 2 & 5 & -7 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -3 & 1 \end{bmatrix}$ R2 G Ky

3

・ロト ・ 四ト ・ ヨト ・ ヨト





3

・ロト ・四ト ・ヨト ・ヨト

Some Theorems:

Theorem: The $n \times n$ matrix *A* is invertible if and only if det(*A*) \neq 0.

Theorem: For $n \times n$ matrix A, det(A^T) =det(A).

Theorem: For $n \times n$ matrices *A* and *B*, det(*AB*) =det(*A*) det(*B*).

< □ → < □ → < 亘 → < 亘 → < 亘 → 三 のへで September 26, 2017 22 / 61

Example

Show that if A is an $n \times n$ invertible matrix, then

$$det(A^{-1}) = \frac{1}{det(A)}.$$
Note $det(I_n) = 1$ we have $I = A\overline{A}'$, so
 $det(I) = det(A\overline{A}') = det(A) det(\overline{A}')$
Hence $1 = det(A) det(\overline{A}')$
So $det(\overline{A}') = \frac{1}{det(A)}$

September 26, 2017 23 / 61

э

イロト イヨト イヨト イヨト

Example

Let *A* be an $n \times n$ matrix, and suppose there exists invertible matrix *P* such that

$$B=P^{-1}AP.$$

Show that

det(B) = det(A). det(B) = det(P'AP) = dt(P') det(AP) = det(P') det(A) det(P)real number factors \Rightarrow det (B) = det (p') det (P) det (A). 11 =) det(B) = det(A).

Section 4.1: Vector Spaces and Subspaces

Definition A **vector space** is a nonempty set *V* of objects called *vectors* together with two operations called *vector addition* and *scalar multiplication* that satisfy the following ten axioms: For all \mathbf{u} , \mathbf{v} , and \mathbf{w} in *V*, and for any scalars *c* and *d*

- 1. The sum $\mathbf{u} + \mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
- $2. \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- 4. There exists a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar c, $c\mathbf{u}$ is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
.

- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$.

10. 1**u** = **u**

Remarks

- V is more accurately called a *real vector space* when we assume that the relevant scalars are the real numbers.
- Property 1. is that V is closed under (a.k.a. with respect to) vector addition.
- Property 6. is that V is closed under scalar multiplication.
- A vector space has the same basic *structure* as \mathbb{R}^n
- These are axioms. We assume (not "prove") that they hold for vector space V. However, they can be used to prove or disprove that a given set (with operations) is actually a vector space.

Examples of Vector Spaces

For an integer $n \ge 0$, \mathbb{P}_n denotes the set of all polynomials with real coefficients of degree at most n. That is

$$\mathbb{P}_n = \{\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{p}_1 t + \dots + \mathbf{p}_n t^n \mid \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n \in \mathbb{R}\},\$$

where addition² and scalar multiplication are defined by

$$(\mathbf{p}+\mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t) = (p_0 + q_0) + (p_1 + q_1)t + \dots + (p_n + q_n)t^n$$

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = cp_0 + cp_1t + \cdots + cp_nt^n.$$

 ${}^{2}\mathbf{q}(t) = q_0 + q_1t + \cdots + q_nt^n$

September 26, 2017 27 / 61

A THE A THE

Example

What is the zero vector **0** in \mathbb{P}_n ? J should satisfy J+p=p for ead p in Ph Let $\vec{0} = a_0 + a_1 t + c_2 t^2 + ... + a_n t^2$ $(\vec{0} + \vec{P})(k) = \vec{O}(k) + \vec{P}(k) = (a_0 + P_0) + (a_1 + P_1) + \dots + (a_n + P_n) + \vec{O}(k)$ = po + pit + Pit + ... + Pn t This requires at=0 for each i=0,..., n. $\vec{0} = 0 + 0E + 0E' + \dots + 0E' = 0$

Example

If
$$\mathbf{p}(t) = p_0 + p_1 t + \dots + p_n t^n$$
, what is the vector $-\mathbf{p}$?
Let $\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{p}_1 t + \dots + \mathbf{p}_n t^n$, what is the vector $-\mathbf{p}$?
Let $-\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{p}_1 t + \mathbf{p}_2 t^2 + \dots + \mathbf{p}_n t^n$
 $(\mathbf{p} + (-\mathbf{p}))(t) = \mathbf{p}(t) + (-\mathbf{p})(t)$
 $= (\mathbf{p}_0 + \mathbf{b}_0) + (\mathbf{p}_1 + \mathbf{b}_1)t + \dots + (\mathbf{p}_n + \mathbf{b}_n)t^n = \mathbf{0}$
Thus requires $\mathbf{p}_{i+\mathbf{b}i} = \mathbf{0}$ for each i , $\mathbf{b}_i = -\mathbf{p}_i$
 $-\mathbf{p}(t) = -\mathbf{p}_0 - \mathbf{p}_1 t - \dots - \mathbf{p}_n t^n$.

September 26, 2017 29 / 61

◆□> ◆圖> ◆理> ◆理> 「理

Examples of Vector Spaces

Let *V* be the set of all differentiable, real valued functions f(x) defined for $-\infty < x < \infty$ with the property that

f(0) = 0.

Define vector addition and scalar multiplication in the standard way for functions—i.e.

(f+g)(x) = f(x) + g(x), and (cf)(x) = cf(x).

September 26, 2017 30 / 61

イロト 不得 トイヨト イヨト ヨー ろくの

Example

۱

Verify that properties 1. and 6. hold.

f f and g are differentiable then
$$(f+g)' = f'+g'$$

and $(cf)' = (f' - So - f+g) and (f - aredifferentiable for any f, g in our set andscalar c.For f and g in our set, $f(o)=0$ and $g(o)=0$
so $(f+g)(o)=f(o)+g(o)=0+0=0$.
The set is closed under vector addition.$

31/61

Also (cf)(o) = cf(o) = C.0 = 0. So the set is closed under scalar

multiplication.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A set that is not a Vector Space Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}, | x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(1) Does property 1. hold for V?
Let [x] and [y] in V. So x ≤0, y ≤0, u ≤0, and V ≤0.
[x] y [y] = [x+h] x+h ≤0 and y+v ≤0
U is closed under vector addition.

September 26, 2017 33 / 61

イロト 不得 トイヨト イヨト 二日

A set that is not a Vector Space Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}, | x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(2) Does property 6. hold for V?

September 26, 2017 34 / 61

・ロト ・ 四ト ・ ヨト ・ ヨト …