Sept. 28 Math 1190 sec. 52 Fall 2016

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

A relation—an equation involving two variables x and y, F(x, y) = C—such as

$$x^2 + y^2 = 16$$
 or $(x^2 + y^2)^3 = x^2$

implies that *y* is defined to be one or more functions of *x*.

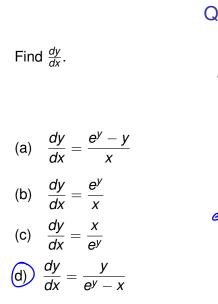
Given a relation, we can try to determine the derivative $\frac{dy}{dx}$.

Finding a Derivative Using Implicit Differentiation:

- Take the derivative of both sides of an equation with respect to the independent variable.
- Use all necessary rules for differenting powers, products, quotients, trig functions, exponentials, compositions, etc.
- ► Remember the chain rule for each term involving the dependent variable (e.g. mult. by $\frac{dy}{dx}$ as required).
- Use necessary algebra to isolate the desired derivative $\frac{dy}{dx}$.

Example Recall Find $\frac{dy}{dx}$. $\frac{d}{dt} \frac{d^{x}}{dt} = 2^{x} \ln 2$ $v 2^{x} + x 2^{y} = 1$ $\frac{d}{dy}fg=fg+fg'$ $\frac{d}{dx}\left(y^{2} + x^{2}\right) = \frac{d}{dx}(1)$ 1 î products $\frac{d}{dx}\left(y^{2}^{x}\right) + \frac{d}{dx}\left(x^{2}^{y}\right) = 0$ $\left(\frac{d}{dx}b\right)2^{x} + y\left(\frac{d}{dx}2^{x}\right) + \left(\frac{d}{dx}x\right)2^{y} + x\left(\frac{d}{dx}2^{y}\right) = 0$ $\frac{dy}{dx} 2^{x} + y 2^{x} \ln 2 + 1 \cdot 2^{y} + x 2^{y} \ln 2 \cdot \frac{dy}{dx} = 0$

 $2^{\frac{1}{2}}\frac{dy}{dx} + x 2^{\frac{1}{2}}\ln 2 \frac{dy}{dx} = -y 2^{\frac{1}{2}}\ln 2 - 2^{\frac{1}{2}}$ $(2^{x} + x 2^{b} \ln 2) \frac{dy}{dy} = -y 2^{x} \ln 2 - 2^{b}$ $\frac{dy}{dx} = -\frac{y^2 \int dx^2 - Z^2}{2^2 + x Z^2 \int dx^2}$



Question

$$\frac{d}{dx} xy = (\frac{d}{dx}x)y + x (\frac{d}{dx}y)$$

$$e^{y} = xy \qquad \frac{d}{dx} e^{f(x)} = e^{f(x)} \cdot f'(x)$$

$$\frac{d}{dx} e^{y} = \frac{d}{dx} (xy)$$

$$e^{y} \frac{dy}{dx} = 1 \cdot y + x \cdot \frac{dy}{dx}$$

$$e^{y} \frac{dy}{dx} - x \frac{dy}{dx} = y$$

$$(e^{y} - x) \frac{dy}{dx} = y = \frac{dy}{dx} = \frac{y}{e^{y} - x}$$

Example

Find the equation of the line tangent to the graph of $x^3 + y^3 = 6xy$ at the point (3,3).

Note that (3,3) is on the graph since $3^3 + 3^3 = 54 = 6(3)(3)$ We need a point and a slope. The point (3,3) is given, The slope $M_{tan} = \frac{dy}{dx} \mathcal{O}(3,3)$. Find $\frac{dy}{dx}$: $\frac{d}{dx}(x^3+y^3)=\frac{d}{dx}(6xy)$ $3x^2 + 3y^2 \cdot \frac{dy}{dx} = 6\left(1 \cdot y + x \cdot \frac{dy}{dx}\right)$ D.v.de by 3 $3x^{2} + 3x^{2} \frac{dy}{dx} = 6x + 6x \frac{dy}{dx}$

 $x^{2} + y^{2} \frac{dy}{dx} = 2y + 2x \frac{dy}{dx}$ $y^2 \frac{dy}{dx} - 2x \frac{dy}{dx} = 2y - x^2$ $(y^2 - 2x) \frac{dy}{dx} = 2y - x^2$ $\frac{dy}{dx} = \frac{2y - x^2}{y^2 - 2x}$ $M_{ton} = \frac{d_{5}}{dx} @ (3,3) , M_{ton} = \frac{2 \cdot 3 - 3^{2}}{3^{2} - 2 \cdot 3}$

$$M_{tan} = \frac{6-9}{9-6} = \frac{-3}{3} = -1$$

y-3=-1 (x-3)

$$y = -x + 3 + 3$$

$$\Rightarrow y = -x + 6$$

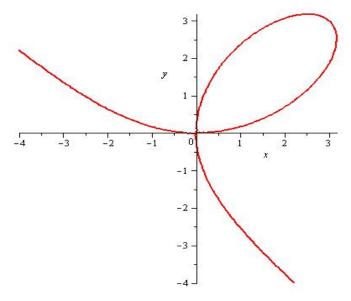


Figure: Folium of Descartes $x^3 + y^3 = 6xy$

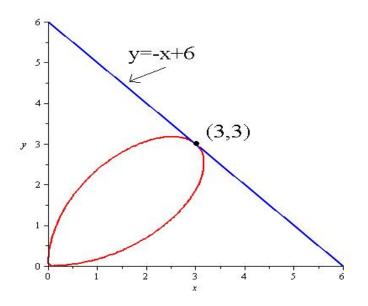


Figure: Folium of Descartes with tangent line at (3,3)

Question

Find the equation of the line tangent to the graph of $y^2 + y + x^2 = 6$ at the point (2, 1).

$$\frac{dy}{dx} = \frac{-2x}{2y+1}$$

(a)
$$y = -6x + 13$$

(b)
$$y = -x + 3$$

$$M = \frac{-2 \cdot 2}{2 \cdot 1 + 1} = \frac{-4}{3}$$

(c)
$$y = -\frac{4}{3}x + \frac{11}{3}$$

(d) $y = -\frac{5}{2}x + 6$

The Power Rule: Rational Exponents

Let $y = x^{p/q}$ where *p* and *q* are integers. This can be written implicitly as $v^q = x^p$.

Find
$$\frac{dy}{dx}$$
.

Use implicit differentiation $\frac{d}{dx}$ y $\frac{d}{dx} = \frac{d}{dx} x^{p}$ $q_{y}e^{-1}\frac{dy}{dx} = P \times e^{-1}$ $\frac{dy}{dx} = \frac{p x^{r-1}}{2 y^{q-1}}$

$$\frac{dy}{dx} = \frac{p \times r \cdot x^{1}}{q y^{q} \cdot y^{1}}$$

$$= \frac{p}{q} \frac{x^{p}}{y^{q}} \frac{x^{1}}{x^{1}} y$$

$$= \frac{p}{q} (1) \frac{x^{1}}{x} \frac{x^{q}}{x^{q}}$$

$$\frac{dy}{dx} = \frac{p}{q} \frac{x^{q-1}}{x^{q}}$$
This is power

fe callb = X^{Plg} andy² = X^P so1 = X^Py²

This is our same power rule.

The Power Rule: Rational Exponents

Theorem: If *r* is any rational number, then when x^r is defined, the function $y = x^r$ is differentiable and

$$\frac{d}{dx}x^r = rx^{r-1}$$

for all x such that x^{r-1} is defined.

For example

$$\frac{d}{dx} \int x = \frac{d}{dx} x'^2 = \frac{1}{2} x' = \frac{1}{2} x' = \frac{1}{2x'^2} = \frac{1}{2\sqrt{x}}$$

Examples

Evaluate (a) $\frac{d}{dx}\sqrt[4]{x} = \frac{d}{dx} \frac{1}{x} = \frac{1}{y} \frac{1}{x} = \frac{1}{y} \frac{1}{x^{3}} = \frac{1}{y} \frac{1}{x^{3}} = \frac{1}{y} \frac{1}{\sqrt[4]{x^{3}}}$

(b)
$$\frac{d}{dv} \csc(\sqrt{v}) = - \csc(\sqrt{v}) \csc(\sqrt{v}) \cdot \frac{1}{2\sqrt{v}} = \frac{-\csc(\sqrt{v}) \cot(\sqrt{v})}{2\sqrt{v}}$$

 $\frac{1}{\sqrt{v}} = \frac{1}{\sqrt{v}}$
 $\frac{1}{\sqrt{v}} = \frac{1}{\sqrt{v}}$

Find
$$f'(x)$$
 where $f(x) = \sqrt[3]{2x}$.
(a) $f'(x) = \frac{1}{3}(2x)^{-2/3}$
(b) $f'(x) = \frac{2}{3}x^{-1/3}$
(c) $f'(x) = \frac{2}{3\sqrt[3]{4x^2}}$
(d) $f'(x) = \frac{2}{3}(x)^{-2/3}$
Question

$$f(x) = \sqrt[3]{2x}$$

$$f(x) = \frac{1}{3}(2x)^{-3} \cdot (2)$$

$$= \frac{1}{3}(2x)^{-3} \cdot (2)$$

$$= \frac{2}{3}(2x)^{-3} \cdot (2)$$

$$= \frac{2}{3}(2x)^{-3} \cdot (2)$$

$$= \frac{2}{3}(2x)^{-3} \cdot (2)$$

$$= \frac{2}{3}(2x)^{-3} \cdot (2)$$