September 28 Math 2306 sec 51 Fall 2015

Section 4.4: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

We'll make a guess as to the form of y_{p}, and see if we can moke it worle.

Since $g(x)=8 x+1$ is a line, perhaps y_{p} is a line.

Suppose $y_{p}=A x+B$

Bling ap into the DE

$$
y_{p}=A x+B, \quad y_{p}^{\prime}=A, \quad y_{p}^{\prime \prime}=0
$$

we need $y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1$

$$
\begin{aligned}
0-4(A)+4(A x+B) & =8 x+1 \\
4 A x+4 B-4 A & =8 x+1
\end{aligned}
$$

Match coefficients

$$
\begin{gathered}
4 A=8 \quad \Rightarrow \quad A=2 \\
-4 A+4 B=1 \quad \Rightarrow \quad 4 B=1+4 A=1+4 \cdot 2=9 \\
B=\frac{9}{4}
\end{gathered}
$$

we found reeffients that work so

$$
y_{p}=2 x+\frac{9}{4} .
$$

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-y^{\prime}=4 e^{-5 x}
$$

Here, $g(x)=4 e^{-5 x}$, a constant times $e^{-5 x}$.
So let's see if

$$
\begin{aligned}
& y_{p}=A e^{-5 x} \\
& y_{p}{ }^{\prime}=-5 A e^{-5 x} \\
& y_{p}^{\prime \prime}=25 A e^{-5 x}
\end{aligned}
$$

up
a^{50}

$$
\begin{aligned}
y_{p}^{\prime \prime}-y_{p}^{\prime} & =4 e^{-5 x} \\
25 A e^{-5 x}-\left(-5 A e^{-5 x}\right) & =4 e^{-5 x} \\
25 A e^{-5 x}+5 A e^{-5 x} & =4 e^{-5 x} \\
30 A e^{-5 x} & =4 e^{-5 x}
\end{aligned}
$$

Matching coefficients

$$
\begin{aligned}
30 A & =4 \\
A & =\frac{2}{15}
\end{aligned}
$$

$$
y_{p}=\frac{2}{15} e^{-5 x}
$$

Make the form general

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

Here $g(x)=16 x^{2}$ a constant times x^{2}.
Perhaps $y_{p}=A x^{2}$.

$$
\begin{aligned}
& y_{p}=A x^{2}, \quad y_{p}^{\prime}=2 A x, \quad y_{p}^{\prime \prime}=2 A \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
& 2 A-4(2 A x)+4 A x^{2}=16 x^{2}
\end{aligned}
$$

$$
\underline{\underline{A A}} x^{2}-8 A x+2 A=16 x^{2}+0 x+0
$$

Match coefficients

$$
\left.\begin{array}{r}
4 A=16 \\
-8 A=0 \\
2 A=0
\end{array}\right\} \Rightarrow \begin{array}{r}
\text { requires } \quad A=4 \quad \text { and } A=0 \\
\text { which isht possible. }
\end{array}
$$

Let's try again. $\quad g(x)=16 x^{2}$ is a quadratic
Suppose $y_{p}=A x^{2}+B x+C$

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x+B \\
& y_{p}^{\prime \prime}=2 A
\end{aligned}
$$

September 25, $2015 \quad 9 / 39$

$$
\begin{aligned}
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
& 2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2} \\
& 4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0 \\
& =2 \Rightarrow A=4 \\
& 4 A \Rightarrow 4 B=8 A \Rightarrow B=2 A=2 \cdot 4=8 \\
& -8 A+4 B=0 \Rightarrow 4 B= \\
& 2 A-4 B+4 C=0 \Rightarrow 4 C=4 A=4 \cdot 8-2 \cdot 4=24 \\
& 4 C=24 \quad C=6
\end{aligned}
$$

This worked giving

$$
y_{p}=4 x^{2}+8 x+6
$$

General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

$g(x)=20 \sin (2 x)$ constant tines $\sin (2 x)$
Perhaps $\quad y_{p}=A \sin (2 x)$

$$
\begin{aligned}
y_{p}^{\prime} & =2 A \cos (2 x) \\
y_{p}^{\prime \prime} & =-4 A \sin (2 x) \\
y_{p}^{\prime \prime}-y_{p}^{\prime} & =20 \sin (2 x)
\end{aligned}
$$

$$
\begin{aligned}
& -4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x) \\
& \left.\begin{array}{l}
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)+0 \cos (2 x) \\
= \\
-4 A=20 \\
-2 A=0
\end{array}\right\} \Rightarrow \begin{array}{l}
A=-5 \text { and } A=0 \\
\text { which cant be }
\end{array}
\end{aligned}
$$

Try again with $y_{p}=A \sin (2 x)+B \cos (2 x)$

$$
\begin{aligned}
& y_{p}^{\prime}=2 A \cos (2 x)-2 B \sin (2 x) \\
& y_{p}^{\prime \prime}=-4 A \sin (2 x)-4 B \cos (2 x)
\end{aligned}
$$

$$
\begin{aligned}
& y_{p}^{\prime \prime}-y_{p}^{\prime}=20 \sin (2 x) \\
& -4 A \sin (2 x)-4 B \cos (2 x)-(2 A \cos (2 x)-2 B \sin (2 x))=20 \sin (2 x) \\
& (\underline{-4 A+2 B)} \sin (2 x)+(-2 A-4 B) \cos (2 x)=20 \sin (2 x)+0 \cdot \cos (2 x) \\
& -4 A+2 B=20 \\
& -2 A-4 B=0 \Rightarrow 4 B=-2 A, \quad A=-2 B \\
& -4 A+2 B=20 \\
& -4(-2 B)+2 B=20 \Rightarrow 10 B=20 \quad B=2
\end{aligned}
$$

$$
A=-2 B=-4
$$

This worked giving

$$
y_{p}=-4 \sin (2 x)+2 \cos (2 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(a) $g(x)=1$ (or really any constant) g is a constont function

$$
y_{p}=A
$$

(b) $g(x)=x-7$
g is $1^{\text {st }}$ degra polynomid

$$
y_{p}=A x+B
$$

(c) $g(x)=5 x$
$g^{\text {is }}$ a $\left.\right|^{\text {st }}$ deguen polynomid

$$
y p=A x+B
$$

(d) $g(x)=3 x^{3}-5 \quad \delta$ is a $3^{\text {nd }}$ degree polynomid

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

More Trial Guesses
(e) $g(x)=x e^{3 x} \quad$ |st degree polynonide times $e^{3 x}$

$$
y_{p}=(A x+B) e^{3 x}
$$

(f) $g(x)=\cos (7 x)$ constants times $\sin (7 x)$ and $\cos (2 x)$

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

(g) $g(x)=\sin (2 x)-\cos (4 x)$ constants tines sines and cosines of $2 x$ and $4 x$

$$
y_{p}=A \sin (2 x)+B \cos (2 x)+C \sin (4 x)+D \cos (4 x)
$$

(h) $g(x)=x^{2} \sin (3 x)$
a quadratic timer sine and cosine $3 x$

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \operatorname{Cor}(3 x)
$$

