September 28 Math 2306 sec 51 Fall 2015

Section 4.4: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

Motivating Example

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

We'll make a guess as to the form of yp, and
see if we can make it work.
Since gen= 8x+1 is a line, perhaps
yp is a line.
Suppose $y_{\bullet} = Ax + B$

Plug
$$3p$$
 into the DE

 $y_{r} = Ax + B$, $3p^{1} = A$, $y_{p}'' = 0$

We need $y_{p}'' - 4y_{p}' + 4y_{p} = 8x + 1$
 $0 - 4(A) + 4(Ax + B) = 8x + 1$
 $4Ax + 4B - 4A = 8x + 1$

Match coefficients

we found coefficients that work so

$$x_p = 2x + \frac{9}{4}.$$

The Method: Assume y_p has the same **form** as g(x)

$$y'' - y' = 4e^{-5x}$$

Here, $g(x) = 4e^{-5x}$, a constant times e^{5x} .
So let's see if
$$y_{p} = A e$$

$$y_{p}'' = -5A e^{-5x}$$

$$y_{p}''' = 25A e^{-5x}$$

$$30A = 4$$

$$A = \frac{3}{15}$$

Make the form general

$$y'' - 4y' + 4y = 16x^{2}$$
Here $g(x) = 16x^{2}$ a constant times x^{2} .

Perhaps $y_{p} = Ax^{2}$.

 $y_{p} = Ax^{2}$, $y_{p}'' = 2Ax$, $y_{p}''' = 2A$
 $y_{p}''' - 4y_{p}' + 4y_{p} = 16x^{2}$
 $2A - 4(2Ax) + 4Ax^{2} = 16x^{2}$

Match coefficients

Let's try again. Sur= 16x2 is a quadratic

50" = 2A

$$y_p'' - 4y_p' + 4y_p = 16x^2$$

 $2A - 4(2Ax + B) + 4(Ax^2 + Bx + C) = 16x^2$

General Form: sines and cosines

$$y'' - y' = 20\sin(2x)$$

$$g(x) = 20\sin(2x)$$

$$\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \sin(2x)$$

$$g(x) = 2\cos x + \cos x = \cos x$$

$$-4 \text{ A } \sin(2x) - 2 \text{ A } \cos(2x) = 20 \sin(2x)$$

$$-4 \text{ A } \sin(2x) - 2 \text{ A } \cos(2x) = 20 \sin(2x) + 0 \cos(2x)$$

$$= -20 \text{ A} = -20 \text{ A} = 0$$

$$= -20 \text{ A} = -20 \text{ A} = 0$$

$$9p'' - 9p' = 20 Sin(2x)$$

- $9p' = 20 Sin(2x)$
- $9p' = 20 Sin(2x)$

16/39

Examples of Forms of y_p based on g (Trial Guesses)

(a)
$$g(x) = 1$$
 (or really any constant) $g(x) = 1$

(b)
$$g(x) = x - 7$$
 g is 1St legra polynomial

 $g = Ax + B$

(c)
$$g(x) = 5x$$

$$g \text{ is a 1st degree polynomial}$$

$$g p = Ax + B$$

(d)
$$g(x) = 3x^3 - 5$$
 $f(x) = 3x^3 - 5$ degree polynomial

More Trial Guesses

More Irial Guesses

(e)
$$g(x) = xe^{3x}$$
 $y_p = (Ax + B) e^{3x}$

(f)
$$g(x) = \cos(7x)$$
 Constants times $\sin(7x)$ and $\cos(7x)$

(g)
$$g(x) = \sin(2x) - \cos(4x)$$
 constants times sinces of $7x$ and $4x$

(h)
$$g(x) = x^2 \sin(3x)$$

a quadratic times sine and cosine $3x$