September 28 Math 2306 sec. 57 Fall 2017

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example

Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

We made a guess that $y_{p}=A x+B$, a first order polynomial, because that's what $g(x)$ is. Substituting this guess into the ODE, we found that it works if $A=2$ and $B=\frac{9}{4}$. So we did find a particular solution

$$
y_{p}=2 x+\frac{9}{4}
$$

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}
$$

$g(x)=6 e^{-3 x}$ is a constant tines $e^{-3 x}$. Let's assume that $y_{p}=A e^{-3 x}$. We substitute into the ODE.

$$
\begin{aligned}
& y_{p}^{\prime}=-3 A e^{-3 x}, \quad y_{p}^{\prime \prime}=9 A e^{-3 x} \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y p=9 A e^{-3 x}-4\left(-3 A e^{-3 x}\right)+4\left(A e^{-3 x}\right)=6 e^{-3 x} \\
& \Rightarrow \quad 9 A e^{-3 x}+12 A e^{-3 x}+4 A e^{-3 x}=6 e^{-3 x} \\
& \quad 25 A e^{-3 x}=6 e^{-3 x} \Rightarrow A=\frac{6}{25}
\end{aligned}
$$

Hence $y_{p}=\frac{6}{25} e^{-3 x}$

Make the form general

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

$g(x)=16 x^{2}$ which is a constant times x^{2}. Perhaps $y_{p}=A x^{2}$, we can substitute $y_{p}{ }^{\prime}=2 A x, y_{p}{ }^{\prime \prime}=2 A$

$$
\begin{aligned}
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
& 2 A-4(2 A x)+4\left(A x^{2}\right)=16 x^{2} \\
& 4 A x^{2}-8 A x+2 A=16 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Match } \\
& \text { Coefficients }
\end{aligned} \quad 4 A=16,-8 A=0,2 A=0
$$

$\Rightarrow A=4$ and $A=0$ not possible

Let's consider $g(x)=16 x^{2}$ to be a $2^{n d}$ depree polynonice and suppore $y_{p}=A x^{2}+\beta x+C$.

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x+B, \quad y_{p}^{\prime \prime}=2 A \\
& y_{p}^{\prime \prime}-4 y p^{\prime}+4 y p=16 x^{2} \\
& 2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2} \\
& 4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0
\end{aligned}
$$

Match Coefficients

$$
4 A=16, \quad-8 A+4 B=0 \quad 2 A-4 B+4 C=0
$$

\downarrow
$A=4$

$$
\begin{aligned}
4 B & =8 A \\
B & =2 A=2 \cdot 4=8
\end{aligned}
$$

$$
\begin{aligned}
4 C & =-2 A+4 B \\
C & =\frac{-1}{2} A+B \\
& =-2+8=6
\end{aligned}
$$

$$
\text { so } y_{p}=4 x^{2}+8 x+6
$$

General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

If we assume that $y_{p}=A \sin (2 x)$, taking two derivatives would lead to the equation

$$
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)
$$

This would require (matching coefficients of sines and cosines)

$$
-4 A=20 \text { and } \quad-2 A=0
$$

This is impossible as it would require $-5=0$!

General Form: sines and cosines

We must think of our equation $y^{\prime \prime}-y^{\prime}=20 \sin (2 x)$ as

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+0 \cos (2 x)
$$

The correct format for y_{p} is

$$
y_{p}=A \sin (2 x)+B \cos (2 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(a) $g(x)=1$ (or really any constant)

$$
y_{p}=A \quad \text { a constant }
$$

(b) $g(x)=x-7$

$$
y_{p}=A x+B
$$

$1^{\text {st }}$ degree poly.

Examples of Forms of y_{p} based on g (Trial Guesses)
(c) $g(x)=5 x^{2}$

$$
y_{p}=A x^{2}+B x+C \quad 2^{n d} \text { degree poly. }
$$

(d) $g(x)=3 x^{3}-5$

$$
y_{p}=A x^{3}+B x^{2}+C x+D \quad 3^{\text {rd }} \text { degree poly. }
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(e) $g(x)=x e^{3 x}$

$$
y_{p}=(A x+B) e^{3 x} \quad 1^{5+} \text { degree pols. times } e^{3 x}
$$

(f) $g(x)=\cos (7 x)$

Linear combo of

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

$$
\cos (7 x) \text { and } \sin (7 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(g) $g(x)=\sin (2 x)-\cos (4 x)$

$$
y_{p}=A \sin (2 x)+B \cos (2 x)+C \cos (4 x)+D \sin (4 x)
$$

(h) $g(x)=x^{2} \sin (3 x)$

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)
$$

$2^{n d}$ degree poly time lin. conto of

$$
\sin (3 x) \text { and } \cos (3 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(i) $g(x)=e^{x} \cos (2 x)$

$$
y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)
$$

e^{x} times a linear conto of $\sin (2 x)$ and $\cos (2 x)$.
(j) $g(x)=x e^{-x} \sin (\pi x)$

$$
y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)
$$

The Superposition Principle
Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\underbrace{6 e^{-3 x}}_{g_{1}(x)}+\underbrace{16 x^{2}}_{g_{2}(x)}
$$

For g.: $y_{p_{1}}=A e^{-3 x} \quad y_{p_{1}}$ solves $y^{\prime \prime}-4 y^{\prime}+4_{y}=6 e^{-3 x}$
For $g_{2}: y_{p_{2}}=B x^{2}+C x+D$ and $y_{p_{2}}$ solves $y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}$
By the principe of superposition, the fore of y_{p} is $y_{p}=y_{p_{1}}+y_{p_{2}}=A e^{-3 x}+B x^{2}+C x+D$

From or excmpler, we tound

$$
\begin{aligned}
& y_{p_{1}}=\frac{6}{25} e^{-3 x} \\
& y_{p_{2}}=4 x^{2}+8 x+6
\end{aligned}
$$

so a particula soltion to

$$
\begin{aligned}
& y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2} \text { is } \\
& y_{p}=\frac{6}{25} e^{-3 x}+4 x^{2}+8 x+6
\end{aligned}
$$

