September 28 Math 3260 sec. 57 Fall 2017

Section 4.1: Vector Spaces and Subspaces

Definition A real vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication such that: For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The $\operatorname{sum} \mathbf{u}+\mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $\mathbf{1 u}=\mathbf{u}$

Remarks

- V is more accurately called a real vector space when we assume that the relevant scalars are the real numbers.
- Property 1 . is that V is closed under (a.k.a. with respect to) vector addition.
- Property 6. is that V is closed under scalar multiplication.
- A vector space has the same basic structure as \mathbb{R}^{n}
- These are axioms. We assume (not "prove") that they hold for vector space V. However, they can be used to prove or disprove that a given set (with operations) is actually a vector space.

Examples of Vector Spaces

(1) \mathbb{P}_{n}, the set of all polynomials with real coefficients of degree at most n

$$
\begin{gathered}
\mathbb{P}_{n}=\left\{\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n} \mid p_{0}, p_{1}, \ldots, p_{n} \in \mathbb{R}\right\}, \text { where } \\
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t+\cdots+\left(p_{n}+q_{n}\right) t^{n} \\
(c \mathbf{p})(t)=c \mathbf{p}(t)=c p_{0}+c p_{1} t+\cdots+c p_{n} t^{n}
\end{gathered}
$$

(2) Let V be the set of all differentiable, real valued functions $f(x)$ defined for $-\infty<x<\infty$ with the property that $f(0)=0$. Vector addition and scalar multiplication in the standard way for functions-i.e.

$$
(f+g)(x)=f(x)+g(x), \quad \text { and } \quad(c f)(x)=c f(x)
$$

A set that is not a Vector Space

Let $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right], \mid x \leq 0, y \leq 0\right\}$ with regular vector addition and
scalar multiplication in \mathbb{R}^{2}. Note V is the third quadrant in the $x y$-plane.

We saw that this is not a vector space. One reason is that even if \mathbf{u} is in $V, c \mathbf{u}$ is not necessarily in V. In fact, if $\mathbf{u} \neq \mathbf{0}$, then $c \mathbf{u}$ is not in V for any negative number c.

Theorem

Let V be a vector space. For each \mathbf{u} in V and scalar c

$$
\begin{aligned}
0 \mathbf{u} & =0 \\
c \mathbf{0} & =\mathbf{0} \\
-1 \mathbf{u} & =-\mathbf{u}
\end{aligned}
$$

Subspaces

Definition: A subspace of a vector space V is a subset H of V for which
a) The zero vector is in H^{1}
b) H is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in H implies $\mathbf{u}+\mathbf{v}$ is in H)
c) H is closed under scalar multiplication. (i.e. \mathbf{u} in H implies $c \mathbf{u}$ is in H)
${ }^{1}$ This is sometimes replaced with the condition that H is nonempty.

Example
Consider \mathbb{R}^{n} and let $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a nonempty $(p \geq 1)$ subset of \mathbb{R}^{n}. Show that V is a subspace.

Note $\vec{O}=O \vec{v}_{1}+\dot{O} \vec{v}_{2}+\ldots+O \vec{v}_{p} \Rightarrow \vec{O}$ is in V.
If \vec{u} and \vec{w} are in V

$$
\vec{u}=c_{1} \vec{v}_{1}+\ldots+c_{p} \vec{v}_{p} \text { and } \vec{w}=d_{1} \vec{v}_{1}+\ldots+d_{p} \vec{v}_{p}
$$

Then $\vec{u}+\vec{w}_{w}=\left(c_{1}+d_{1}\right) \vec{v}_{1}+\left(c_{2}+d_{2}\right) \vec{v}_{2}+\ldots+\left(c_{p}+d p\right) \vec{v}_{p}$
So $\vec{u}+\vec{w}$ is in V.
Also $k \vec{b}=k c_{1} \vec{v}_{1}+k c_{2} \vec{v}_{2}+\ldots+k c_{p} \stackrel{\rightharpoonup}{v}_{p}$. for scalar k
So kin is also in V.

So $V=\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ has the zero vector in it, and it's closed under booth operations. Hence V is a subspace of \mathbb{R}^{n}.

Example
Determine which of the following is a subspace of \mathbb{R}^{2}.
(a) The set of all vectors of the form $\mathbf{u}=\left(u_{1}, 0\right)$.

This is a subspace. In fact, this is $\operatorname{Spon}\left\{\vec{e}_{i}\right\}$. By the $\operatorname{previous}$ exercise, this is a subspace.

Example continued
(b) The set of all vectors of the form $\mathbf{u}=\left(u_{1}, 1\right)$.

This is not a subspace of \mathbb{R}^{2}.
$\overrightarrow{0}$ is not in it.
It also foils to be closed under either operation.

Definition: Linear Combination and Span

Definition Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ be a collection of vectors in V. A linear combination of the vectors is a vector \mathbf{u}

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

for some scalars $c_{1}, c_{2}, \ldots, c_{p}$.

Definition The span, $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is the subet of V consisting of all linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$.

Theorem

Theorem: If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$, for $p \geq 1$, are vectors in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is a subspace of V.

Remark This is called the subspace of V spanned by (or generated by) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Moreover, if H is any subspace of V, a spanning set for H is any set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ such that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Example

$M^{2 \times 2}$ denotes the set of all 2×2 matrices with real entries. Consider the subset H of $M^{2 \times 2}$

$$
H=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} .
$$

Show that H is a subspace of $M^{2 \times 2}$ by finding a spanning set. That is, show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ for some appropriate vectors.

$$
\begin{aligned}
& \text { Let } \vec{u} \text { in } H \text { be } \vec{u}=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \text {. Thu } \\
& \vec{u}=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Let $\vec{V}_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\vec{V}_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

Then $H=\operatorname{Spon}\left\{\vec{V}_{1}, \vec{V}_{2}\right\}$ so H is a subspace of $M^{2 x^{2}}$.

Section 4.2: Null \& Column Spaces, Linear Transformations

Definition: Let A be an $m \times n$ matrix. The null space of A, denoted ${ }^{2}$ by $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. That is

$$
\operatorname{Nul} A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} .
$$

We can say that $\operatorname{Nul} A$ is the subset of \mathbb{R}^{n} that gets mapped to the zero vector under the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.

[^0]Example
Determine Vul A where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
1 & 2 & 7
\end{array}\right] . \quad A \vec{x}=\overrightarrow{0} \\
{\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
1 & 2 & 7 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0
\end{array}\right] \quad \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]} \\
x_{1}=-3 x_{3} \\
x_{2}=-2 x_{3} \\
x_{3}-\operatorname{sinen} \\
\left.\left.\vec{x}=\left[\begin{array}{c}
-3 x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right] \quad \begin{array}{r}
-3 \\
-2 \\
1
\end{array}\right]\right\} .
\end{gathered}
$$

Theorem
For $m \times n$ matrix $A, \operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}.
$\stackrel{O}{0}$ always satisfies $A \vec{x}=\overrightarrow{0}$.
\vec{x} must b in \mathbb{R}^{n} for $A \vec{x}$ to be defined.
Nub A is closed under the operations.
Sec exam 1 problem $\# 4$.

Example
For a given matrix, a spanning set for $\operatorname{Nul} A$ gives an explicit description of this subspace. Find a spanning set for Jul A where

$$
\begin{gathered}
A=\left[\begin{array}{llll}
1 & 0 & 2 & -1 \\
1 & 2 & 6 & -5
\end{array}\right] . \\
{\left[\begin{array}{llll}
1 & 0 & 2 & -1 \\
1 & 2 & 6 & -5
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & -1 \\
0 & 1 & -2
\end{array}\right]} \\
x_{1}=-2 x_{3}+x_{4} \\
x_{2}=-2 x_{3}+2 x_{4} \\
x_{3}, x_{4}-\text { free } \\
\vec{x}=\left[\begin{array}{c}
-2 x_{3}+x_{4} \\
-2 x_{3}+2 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

$$
\text { Nul } A=\text { spon }\left\{\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

[^0]: ${ }^{2}$ Some authors will write $\operatorname{Null}(A) —$ I tend to write two ells.

