Sept. 2 Math 1190 sec. 52 Fall 2016

Section 1.4: Limits and Continuity of Trigonometric, Exponential and Logarithmic Functions

Theorem: $\quad \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$

The first can be stated in alternative ways

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=\lim _{t \rightarrow 0} \frac{\sin t}{t}=\lim _{\circlearrowleft \rightarrow 0} \frac{\sin (3 \circlearrowleft)}{3 \circlearrowleft}=1
$$

The key is that the argument of the sine matches the denominator with these tending to zero.

Example
Evaluate each limit if possible.
(a)

$$
\begin{array}{rlr}
& \lim _{r \rightarrow 0} r \csc (2 r) & \lim _{r \rightarrow 0} \frac{\sin (2 r)}{2 r}=1 \\
= & \lim _{r \rightarrow 0} \frac{r}{\sin (2 r)} & \\
= & \lim _{r \rightarrow 0} \frac{r}{\sin (2 r)} \cdot \frac{2}{2} & \text { Genendization } \\
= & \lim _{r \rightarrow 0} \frac{1}{2} \frac{2 r}{\sin (2 r)}=\frac{1}{2} \lim _{r \rightarrow 0}\left(\frac{\sin (2 r)}{2 r}\right) & \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1 \\
& =\frac{1}{2}(1)^{-1}=\frac{1}{2} &
\end{array}
$$

(b)

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{2 t}{\tan (3 t)}=\lim _{t \rightarrow 0} \frac{2 t}{\frac{\sin (3 t)}{\cos (3 t)}} \\
& =\lim _{t \rightarrow 0} \cos (3 t) \frac{2 t}{\sin (3 t)} \\
& =\lim _{t \rightarrow 0} 2 \cos (3 t) \frac{t}{\sin (3 t)} \cdot \frac{3}{3} \\
& =\lim _{t \rightarrow 0} \frac{2}{3} \cos (3 t) \frac{3 t}{\sin (3 t)}=\frac{2}{3} \cdot 1 \cdot 1=\frac{2}{3} \\
& \quad \lim _{t \rightarrow 0} \cos (3 t)=\cos (0)=1
\end{aligned}
$$

* The 3t inside the sine is out of ow control.

Questions
(1) Evaluate if possible
(a) $\frac{1}{4}$

$$
\begin{aligned}
\lim _{x \rightarrow 0} & \frac{\tan (2 x)}{4 x} \\
& =\lim _{x \rightarrow 0} \frac{\frac{\sin (2 x)}{\cos (2 x)}}{4 x}
\end{aligned}
$$

(b) $\frac{1}{2}$

$$
=\lim _{x \rightarrow 0} \frac{1}{2 \cos (2 x)} \frac{\sin (2 x)}{2 x}
$$

(c) 2

$$
=\frac{1}{2} \cdot 1=\frac{1}{2}
$$

(d) DNE

Question

True/False: Since $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ we can conclude that

$$
\frac{\sin x}{x}=1
$$

False. In fact, $\frac{\sin x}{x}=1$ is never true.

Section 1.5: Infinite Limits, Limits at Infinity, Asymptotes

Here, we will consider limits involving the symbols ∞ (infinity) and $-\infty$ (negative infinity). They will be used to denote unboundedness in the positive and negative directions, respectively.

While ∞ and $-\infty$ are NOT NUMBERS, there is an arithmetic for using these symbols. In particular

- $\infty+\infty=\infty$
- $\infty+c=\infty$ for any real number c
- $\infty \cdot c=\infty$ if $c>0$ and $\infty \cdot c=-\infty$ if $c<0$
- $\frac{0}{\infty}=\frac{0}{-\infty}=0$

Other forms that may appear are indeterminate. The following are not defined.

$$
\infty-\infty, \quad \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad \infty^{0}
$$

Infinite Limits
Investigate the limit

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}
$$

x	$f(x)=\frac{1}{x^{2}}$
-0.1	100
-0.01	10,000
-0.001	1000,000
0	undefined
0.001	$1,000,000$
0.01	10,000
0.1	100

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

Infinite Limits

Definition: Let $f(x)$ be defined on an open interval containing c except possibly at c. Then

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

provided $f(x)$ can be made arbitrarily large by taking x sufficiently close to c. (The definition of

$$
\lim _{x \rightarrow c} f(x)=-\infty
$$

is similar except that f can be made arbitrarily large and negative.)
The top limit statement reads the limit as x approaches c of $f(x)$ equals infinity.

Infinite Limits
Investigate the limit

$$
\lim _{x \rightarrow 0} \frac{1}{x}
$$

\(\left.\begin{array}{|r|c|}\hline x \& f(x)=\frac{1}{x}

\hline-0.1 \& -10

\hline-0.01 \& -100

\hline-0.001 \& -1000

\hline 0 \& undefined

\hline 0.001 \& 1000

\hline 0.01 \& 100

\hline 0.1 \& 10\end{array}\right\} \Rightarrow\)| $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$ |
| :--- |
| $\lim _{x \rightarrow 0} \frac{1}{x}$ DUE |
| $\lim _{x \rightarrow 0} \frac{1}{x}=\infty$ | | The one sided |
| :--- |
| anis done |
| agree |

An Observation

Suppose when taking a limit $\lim _{x \rightarrow c} f(x)$ we see the form

Then this limit MAY be either ∞ or $-\infty$.

- If we determine that the ratio is positive for all x near c, the limit is ∞.
- If we determine that the ratio is negative for all x near c, the limit is $-\infty$.
- If the ratio can take either sign for x sufficiently close to c, the limit DNE.

Evaluate Each Limit if Possible
(a) $\lim _{x \rightarrow 1^{-}} \frac{2 x+1}{x-1}$

$$
=-\infty
$$

Nov $\lim _{x \rightarrow 1^{-}}(2 x+1)=3$

$$
\lim _{x \rightarrow 1^{-}}(x-1)=0
$$

were seeing " $\frac{3}{0}$ "

Since $x \rightarrow 1^{-}, x<1$

$$
x<1 \Rightarrow \quad x-1<0 \text { ie. } x-1
$$ negative

(b) $\lim _{x \rightarrow 1^{+}} \frac{2 x+1}{x-1}$ $2 x+1$ is still tending to 3

Since $x \rightarrow 1^{+}, x>1$

$$
=\infty
$$

$x-1>0$ is. $x-1$ is positive
So we see " $\frac{3}{0}$ " with the ratio always positive.
(c) $\lim _{x \rightarrow 1} \frac{2 x+1}{x-1}$ DUE

The one sided limits disagree.
(d) $\lim _{x \rightarrow 3} \frac{x-x^{2}}{|x-3|}$

$$
\lim _{x \rightarrow 3}\left(x-x^{2}\right)=3-3^{2}=-6
$$

$$
\lim _{x \rightarrow 3}|x-3|=0
$$

$$
=-\infty
$$

It's positice for all x near 3 becanse of the obsolute value bars.

Question

Evaluate if possible $\lim _{t \rightarrow 2} \frac{1}{t-2}$.
(a) ∞

$$
\lim _{t \rightarrow 2^{+}} \frac{1}{t-2}=\infty
$$

(b) $-\infty$
(c) 4

$$
\lim _{t \rightarrow 2^{-}} \frac{1}{t-2}=-\infty
$$

(d) DNE

Well Known Infinite Limits

Some limits that follow from what we know about these functions
$\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$
$\lim _{\theta \rightarrow \frac{\pi^{-}}{2}} \tan \theta=\infty \quad$ and $\quad \lim _{\theta \rightarrow \frac{\pi}{2}^{+}} \tan \theta=-\infty$
$\lim _{\theta \rightarrow 0^{-}} \cot \theta=-\infty \quad$ and $\quad \lim _{\theta \rightarrow 0^{+}} \cot \theta=\infty$
$\lim _{\theta \rightarrow \frac{\pi}{2}^{-}} \sec \theta=\infty \quad$ and $\quad \lim _{\theta \rightarrow \frac{\pi}{2}^{+}} \sec \theta=-\infty$
$\lim _{\theta \rightarrow 0^{-}} \csc \theta=-\infty$ and $\lim _{\theta \rightarrow 0^{+}} \csc \theta=\infty$

Limits at Infinity

We know what is meant by a limit being infinite (i.e. $f \rightarrow \infty$ or $f \rightarrow-\infty)$. Now, we want to consider limits like

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x) \quad \text { or like } \\
\lim _{x \rightarrow-\infty} f(x)
\end{gathered}
$$

What is meant by such a thing, and how is it related to a function's graph?

Definitions

Let f be defined on an interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

provided the value of f can be made arbitrarily close to L by taking x sufficiently large.

Similarly
Defintion: Let f be defined on an interval $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

provided the value of f can be made arbitrarily close to L by taking x sufficiently large and negative.

Example

Investigate the limit

$$
\lim _{x \rightarrow-\infty} e^{x}
$$

Some Results to Remember

Let k be any real number and let p be rational. Then

$$
\lim _{x \rightarrow \infty} \frac{k}{x^{p}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{k}{x^{p}}=0
$$

The latter holds assuming x^{p} is defined for $x<0$.

In essence, if the numerator of a ratio is staying finite while the denominator is becoming infinite, the ratio is tending to zero.

Examples
Evaluate if possible
(a)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x-1}{x^{2}+5 x+2} \\
= & \lim _{x \rightarrow \infty}\left(\frac{3 x^{2}+2 x-1}{x^{2}+5 x+2}\right) \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
= & \lim _{x \rightarrow \infty} \frac{3+\frac{2}{x}-\frac{1}{x^{2}}}{1+\frac{5}{x}+\frac{2}{x^{2}}} \\
= & \frac{3+0-0}{1+0+0}=\frac{3}{1}=3
\end{aligned}
$$

well use

$$
\lim _{x \rightarrow \infty} \frac{k}{x^{p}}=0
$$

Process: Identify the largest power of x Then molt. and divide by its reciprod.

