Sept. 2 Math 1190 sec. 52 Fall 2016

Section 1.4: Limits and Continuity of Trigonometric, Exponential and Logarithmic Functions

Theorem:
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$
 and $\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$

The first can be stated in alternative ways

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \lim_{t \to 0} \frac{\sin t}{t} = \lim_{\heartsuit \to 0} \frac{\sin(3\heartsuit)}{3\heartsuit} = 1$$

The key is that the argument of the sine matches the denominator with these tending to zero.

Example

Evaluate each limit if possible.

(a) $\lim_{r\to 0} r \csc(2r)$	b.
$= \lim_{r \to 0} \frac{r}{\sin(2r)}$	()÷0
$= \lim_{r \to 0} \frac{r}{\sin(2r)} + \frac{2}{2}$	G
$=\lim_{r\to 0} \frac{1}{2} \frac{2r}{\sin(2r)} = \frac{1}{2} \lim_{r\to 0} \left(\frac{\sin(2r)}{2r} \right)$	 6
$=\frac{1}{2}\left(1\right)=\frac{1}{2}$	

$$\lim_{r \to 0} \frac{\sin(2r)}{2r} = 1$$

Generalization

$$\lim_{\Theta \to \Theta} \frac{\Theta}{\sin \Theta} = 1$$

(b)
$$\lim_{t \to 0} \frac{2t}{\tan(3t)} = \lim_{t \to 0} \frac{2t}{\frac{\sin(3t)}{\cos(3t)}}$$

$$= \lim_{t \to 0} Cos(3t) \frac{2t}{\sin(3t)}$$

$$= \lim_{t \to 0} Cos(3t) \frac{2t}{\sin(3t)}$$

$$= \lim_{t \to 0} 2 Cos(3t) \frac{t}{\sin(3t)} \cdot \frac{3}{3}$$

$$= \lim_{t \to 0} \frac{2}{3} Cos(3t) \frac{3t}{\sin(3t)} = \frac{2}{3} \cdot |\cdot| = \frac{2}{3}$$

$$\lim_{t \to 0} Cos(3t) = Cos(0) = 1$$

Questions

Question

True/False: Since
$$\lim_{x\to 0} \frac{\sin(x)}{x} = 1$$
 we can conclude that
 $\frac{\sin x}{x} = 1$
False. In fact, $\frac{\sin x}{x} = 1$ is never true.

Section 1.5: Infinite Limits, Limits at Infinity, Asymptotes

Here, we will consider limits involving the symbols ∞ (*infinity*) and $-\infty$ (*negative infinity*). They will be used to denote **unboundedness** in the positive and negative directions, respectively.

While ∞ and $-\infty$ are NOT NUMBERS, there is an arithmetic for using these symbols. In particular

$$\blacktriangleright \ \infty + \infty = \infty$$

•
$$\infty + c = \infty$$
 for any real number c

•
$$\infty \cdot c = \infty$$
 if $c > 0$ and $\infty \cdot c = -\infty$ if $c < 0$

$$\bullet \ \frac{0}{\infty} = \frac{0}{-\infty} = 0$$

Other forms that may appear are indeterminate. The following **are not defined**.

$$\infty - \infty, \quad \frac{\infty}{\infty}, \quad \mathbf{0} \cdot \infty, \quad \infty^{\mathbf{0}}$$

Infinite Limits

Investigate the limit

 $\lim_{x\to 0}\frac{1}{x^2}$

X	$f(x) = \frac{1}{x^2}$
-0.1	100
-0.01	10000
-0.001	1000,000
0	undefined
0.001	1000,000
0.01	(0,660
0.1	100

 $\lim_{x\to 0} \frac{1}{x^2} = \infty$

Infinite Limits

Definition: Let f(x) be defined on an open interval containing *c* except possibly at *c*. Then

$$\lim_{x\to c} f(x) = \infty$$

provided f(x) can be made arbitrarily large by taking x sufficiently close to c. (The definition of

$$\lim_{x\to c}f(x)=-\infty$$

is similar except that f can be made arbitrarily large and negative.)

The top limit statement reads the limit as x approaches c of f(x) equals infinity.

Infinite Limits

Investigate the limit

 $\lim_{x\to 0}\frac{1}{x}$

An Observation

Suppose when taking a limit $\lim_{x\to c} f(x)$ we see the form

 $\frac{k}{0}$ where k is any nonzero real number.

Then this limit **MAY** be either ∞ or $-\infty$.

- ► If we determine that the ratio is positive for all x near c, the limit is ∞.
- If we determine that the ratio is negative for all x near c, the limit is -∞.
- If the ratio can take either sign for x sufficiently close to c, the limit DNE.

Evaluate Each Limit if Possible

(a)
$$\lim_{x \to 1^{-}} \frac{2x+1}{x-1}$$

= $-\infty$
Note $\lim_{x \to 1^{-}} (2x+1) = 3$
 $\lim_{x \to 1^{-}} (x-1) = 0$
Were seeing $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$

Since
$$x \to 1^-$$
, $x < 1$
 $x < 1 \Rightarrow x - 1 < 0$ i.e. $x - 1$
is
regative

11

(b)
$$\lim_{x \to 1^+} \frac{2x+1}{x-1}$$

= 🔊

(c)
$$\lim_{x \to 1} \frac{2x+1}{x-1} \quad \text{int}$$

The one sided limits disagree.

(d)
$$\lim_{x \to 3} \frac{x - x^2}{|x - 3|}$$

lim
$$(x-x^2) = 3-3^2 = -6$$

lim $(x-x^2) = 3-3^2 = -6$
lim $(x-3) = 0$
It's positive for all
X near 3 because of
the obsolute value
bars.

Question

Evaluate if possible $\lim_{t\to 2} \frac{1}{t-2}$.

Well Known Infinite Limits

Some limits that follow from what we know about these functions

 $\lim_{x\to 0^+}\ln(x)=-\infty$ $\lim_{\theta \to \frac{\pi}{2}^{-}} \tan \theta = \infty \quad \text{and} \quad \lim_{\theta \to \frac{\pi}{2}^{+}} \tan \theta = -\infty$ $\theta \rightarrow \frac{\pi}{2}$ $\lim_{\theta \to 0^{-}} \cot \theta = -\infty \quad \text{and} \quad \lim_{\theta \to 0^{+}} \cot \theta = \infty$ $\theta \rightarrow 0^{-}$ $\lim_{\theta \to \frac{\pi}{2}^{-}} \sec \theta = \infty \quad \text{and} \quad \lim_{\theta \to \frac{\pi}{2}^{+}} \sec \theta = -\infty$

 $\lim_{\theta \to 0^-} \csc \theta = -\infty \quad \text{and} \quad \lim_{\theta \to 0^+} \csc \theta = \infty$

Limits at Infinity

We know what is meant by a limit being infinite (i.e. $f \to \infty$ or $f \to -\infty$). Now, we want to consider limits like

 $\lim_{x\to\infty} f(x) \qquad \text{or like}$

 $\lim_{x\to -\infty} f(x).$

What is meant by such a thing, and how is it related to a function's graph?

Definitions

Let *f* be defined on an interval (a, ∞) . Then

$$\lim_{x\to\infty} f(x) = L$$

provided the value of *f* can be made arbitrarily close to *L* by taking *x* sufficiently large.

Similarly

Definiton: Let *f* be defined on an interval $(-\infty, a)$. Then

)

$$\lim_{x\to-\infty} f(x)=L$$

provided the value of f can be made arbitrarily close to L by taking x sufficiently large and negative.

Example

 $\lim_{x\to -\infty} e^x$

Investigate the limit

Some Results to Remember

Let k be any real number and let p be rational. Then

$$\lim_{x \to \infty} \frac{k}{x^p} = 0 \quad \text{and} \quad \lim_{x \to -\infty} \frac{k}{x^p} = 0$$

The latter holds assuming x^p is defined for x < 0.

In essence, if the numerator of a ratio is staying finite while the denominator is becoming infinite, the ratio is tending to zero.

Examples Evaluate if possible (a) $\lim_{x \to \infty} \frac{3x^2 + 2x - 1}{x^2 + 5x + 2}$ $: \oint_{1 \sim x \neq \infty} \left(\frac{3x^{1} + 2x - 1}{x^{2} + 5x + 2} \right) \cdot \frac{1}{\frac{1}{x^{2}}}$ $= \lim_{X \to \infty} \frac{3 + \frac{2}{x} - \frac{1}{x^2}}{1 + \frac{5}{x} + \frac{2}{y^2}}$ $=\frac{3+0-0}{1+0+0}=\frac{3}{1}=3$

well use $\lim_{x \to \infty} \frac{k}{x^p} = 0$ Process: Identify the lagest power of x Then mult and divide by its reciprocal