September 2 Math 2306 sec 54 Fall 2015

Section 3.1 (1.3, and a peek at 3.2) Applications

A population of dwarf rabbits grows at a rate proportional to the current population. In 2011, there were 58 rabbits. In 2012, the population was up to 89 rabbits. Estimate the number of rabbits expected in the population in 2021.

We let $P(t)$ be the population of rabbits at the time t in years with $t=0$ in 2011. We then translated the above paragraph into the problem

$$
\frac{d P}{d t}=k P, \quad P(0)=58 \quad \text { and } \quad P(1)=89 .
$$

The constant of proportionality k will have to be determined as part of the problem.
we'll solve the IVP

$$
\frac{d P}{d t}=k P \quad P(0)=58
$$

separable

$$
\begin{aligned}
& \frac{1}{P} \frac{d P}{d t}=k \\
& \frac{1}{P} \frac{d P}{d t} d t=k d t \\
& \int \frac{1}{P} d P=\int k d t
\end{aligned}
$$

wrilten as

$$
\frac{d P}{d t}-k P=0
$$

it's $1^{\text {st }}$ orde lineon
$P>0$ as a growing population

$$
\begin{aligned}
\ln P & =k t+C \Rightarrow e^{\ln P}=e^{k t+C}=e^{c} e^{k t} \\
P & =A e^{k t} \text { where } A=e^{c}
\end{aligned}
$$

Use $\quad P(0)=58$

$$
P(0)=A e^{0}=58 \Rightarrow A=58
$$

so $\quad P(t)=58 e^{k t}$

Recall $P(1)=89$, hence

$$
\begin{aligned}
& P(1)=58 e^{k \cdot 1}=89 \Rightarrow e^{k}=\frac{89}{58} \\
\Rightarrow & k=\ln \left(\frac{89}{58}\right) \\
& \ln \left(\frac{89}{58}\right) t
\end{aligned}
$$

The Population $P(t)=58 e^{\ln \left(\frac{89}{58}\right) t}$
The population predicted in 2021 is $P(10)$

$$
P(10)=58 e^{10 \ln \left(\frac{89}{58}\right)}=58 e^{\ln \left(\frac{89}{58}\right)^{10}}
$$

$$
P(10)=58\left(\frac{89}{58}\right)^{10}=\frac{89^{10}}{58^{9}} \approx 4198
$$

The model predicts 4198 rabbits in 2021.

Exponential Growth or Decay

If a quantity P changes continuously at a rate proportional to its current level, then it will be governed by a differential equation of the form

$$
\frac{d P}{d t}=k P \quad \text { i.e. } \quad \frac{d P}{d t}-k P=0 .
$$

Note that this equation is both separable and first order linear. If $k>0$, P experiences exponential growth. If $k<0$, then P experiences exponential decay.

Series Circuits: RC-circuit

Figure: Series Circuit with Applied Electromotive force E, Resistance R, and Capcitance C. The charge of the capacitor is q and the current $i=\frac{d q}{d t}$.

Series Circuits: LR-circuit

Figure: Series Circuit with Applied Electromotive force E, Inductance L, and Resistance R. The current is i.

Measurable Quantities:

Resistance R in ohms (Ω), Inductance L in henries (h), Capacitance C in farads (f),

Applied voltage E in volts (V), Charge q in coulombs (C), Current i in amperes (A)

Current is the rate of change of charge with respect to time: $i=\frac{d q}{d t}$.

Component	Potential Drop	
Inductor	$L_{\frac{d i}{d t}}$	
Resistor	$R i$	i.e. $\quad R \frac{d q}{d t}$
Capacitor	$\frac{1}{c} q$	

Kirchhoff's Law

The sum of the voltages around a closed circuit is zero.

In other words, the sum of potential drops across the passive components is equal to the applied electromotive force.

$$
\begin{aligned}
& E=R_{i}+\frac{1}{c} q \\
& R \frac{d q}{d t}+\frac{1}{c} q=E \quad \begin{array}{l}
\text { list order } \\
\text { linear }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& E=L \frac{d i}{d t}+ R i \\
& L \frac{d i}{d t}+R i=E \\
& \quad i^{\text {st }} \text { or }^{\text {r }} \mathrm{lin}^{\sigma} \\
&
\end{aligned}
$$

Example
A 200 volt battery is applied to an RC series circuit with resistance 1000Ω and capacitance $5 \times 10^{-6} f$. Find the charge $q(t)$ on the capacitor if $i(0)=0.4 A$. Determine the charge as $t \rightarrow \infty$.

$$
\begin{aligned}
R C: & R \frac{d q}{d t}+\frac{1}{c} q=E \\
& 1000 \frac{d q}{d t}+\frac{1}{s \cdot 10^{-6}} q=200 \quad q^{\prime}(0)=i(0)=0.4 \\
S^{00 r^{2} c^{\prime 2}} 80^{\prime 2} & \frac{d q}{d t}+\frac{10^{6}}{s \cdot 10^{3}} q=\frac{200}{1000}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d q}{d t}+200 q=\frac{1}{s} \quad q^{\prime}(0)=0.4 \\
& P(t)=200 \Rightarrow \int p(t) d t=\int 200 d t=200 t
\end{aligned}
$$

Integrating factor $\mu=e^{\int P(x) d t}=e^{200 t}$

$$
\begin{aligned}
& e^{200 t} \frac{d q}{d t}+200 e^{200 t} q=\frac{1}{5} e^{200 t} \\
& \frac{d}{d t}\left[\begin{array}{ll}
200 t & q
\end{array}\right]=\frac{1}{5} e^{200 t}
\end{aligned}
$$

$$
\begin{gathered}
\int \frac{d}{d t}\left[e^{200 t} q\right] d t=\int \frac{1}{s} e^{200 t} d t \\
e^{200 t} q=\frac{1}{s} \cdot \frac{1}{200} e^{200 t}+C \\
q=\frac{1}{1000}+C e^{-200 t}
\end{gathered}
$$

Apply $q^{\prime}(0)=0.4$

$$
q^{\prime}(t)=-200 C e^{-200 t}
$$

$$
\begin{aligned}
q^{\prime}(0)= & -200 C e^{-200 \cdot 0}=0.4 \\
& \Rightarrow-200 C=0.4 \Rightarrow C=\frac{0.4}{-200}=\frac{-1}{500}
\end{aligned}
$$

The charge at time t is

$$
q(t)=\frac{1}{1000}-\frac{1}{500} e^{-200 t} .
$$

As $t \rightarrow \infty$

$$
\lim _{t \rightarrow \infty} q=\lim _{t \rightarrow \infty}\left(\frac{1}{1000}-\frac{1}{500} e^{-200 t}\right)=\frac{1}{1000}-0=\frac{1}{1000}
$$

A Classic Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

A Classic Mixing Problem

Figure: Spatially uniform composite fluids (e.g. salt \& water, gas \& ethanol) being mixed. Concentrations of substances change in time.

Building an Equation

The rate of change of the amount of salt

$$
\frac{d A}{d t}=\binom{\text { input rate }}{\text { of salt }}-\binom{\text { output rate }}{\text { of salt }}
$$

The input rate of salt is

$$
\text { fluid rate in } \cdot \text { concentration of inflow }=r_{i}\left(c_{i}\right)
$$

The output rate of salt is
fluid rate out \cdot concentration of outflow $=r_{0}\left(c_{0}\right)$.

Building an Equation

The concentration of the outflowing fluid is

$$
\begin{gathered}
\frac{\text { total salt }}{\text { total volume }}=\frac{A(t)}{V(t)}=\frac{A(t)}{V(0)+\left(r_{i}-r_{0}\right) t}=c_{0} \\
\frac{d A}{d t}=r_{i} \cdot c_{i}-r_{0} \frac{A}{V} .
\end{gathered}
$$

This equation is first order linear.

Solve the Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

$$
\begin{aligned}
& \text { In coming: } \\
& \text { rate }: r_{i}=5 \frac{\mathrm{gal}^{\mathrm{min}}}{\mathrm{~min}} \\
& \text { conc.: } C_{i}=2 \frac{\mathrm{~b}}{\mathrm{gal}} \\
& \text { Outgoing } \\
& \text { rate: } r_{0}=S \frac{\mathrm{gal}}{\mathrm{~min}} \\
& \text { conc: } C_{0}=\frac{A 1 b}{V g a l}=\frac{A}{500} \frac{\mathrm{Bb}}{\mathrm{gal}^{2 l}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{d A}{d t}=r_{i} c_{i}-r_{0} c_{0}=10-\frac{5 A}{500} \\
\frac{d A}{d t}+\frac{1}{100} A=10
\end{gathered}
$$

From the $1^{\text {st }}$ sentence (pure water) $A(0)=0$ we have the IVP

$$
\frac{d A}{d t}+\frac{1}{100} A=10, \quad A(0)=0
$$

Well solve this prodder on Fndans.

