Sept. 30 Math 1190 sec. 51 Fall 2016

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

Inverse Functions Suppose y = f(x) and x = g(y) are inverse functions—i.e. $(g \circ f)(x) = g(f(x)) = x$ for all x in the domain of f.

Note: As inverse functions, if

$$f(x_0) = y_0$$
 then $g(y_0) = x_0$.

This means that

 (x_0, y_0) is a point on the graph of f, and (y_0, x_0) is a point on the graph of g.

Derivatives of Inverse Functions

Theorem: Let *f* be differentiable on an open interval containing the number x_0 . If $f'(x_0) \neq 0$, then *g* is differentiable at $y_0 = f(x_0)$. Moreover

$$rac{d}{dy}g(y_0) = g'(y_0) = rac{1}{f'(x_0)}.$$

Note that this refers to a pair (x_0, y_0) on the graph of f—i.e. (y_0, x_0) on the graph of g. The slope of the curve of f at this point is the reciprocal of the slope of the curve of g at the associated point.

Example

The function $f(x) = x^7 + x + 1$ has an inverse function *g*. Determine g'(3).

$$\begin{array}{rcl}
|f & y_0 = 3 & \text{ond} & f(x_0) = y_0 = 3 & \text{then} \\
g'(3) &= & \frac{1}{f'(x_0)}
\end{array}$$

We need to find Xo so that $f(x_0) = 3$. This requires $f(x_0) = x_0^{\dagger} + x_0 + 1 = 3$ By observation (i.e. clever guessing) $x_0 = 1$.

$$f_{(x)} = x^{2} + x + 1 \implies f'_{(x)} = 7x^{6} + 1 + 0 = 7x^{6} + 1$$
Then $f'_{(x_{0})} = f'_{(1)} = 7(1)^{6} + 1 = 7 + 1 = 8$
Finally $g'_{(3)} = \frac{1}{f'_{(1)}} = \frac{1}{8}$

Inverse Trigonometric Functions

Recall the definitions of the inverse trigonometric functions.

$$y = \sin^{-1} x \iff x = \sin y, \quad -1 \le x \le 1, \quad -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$y = \cos^{-1} x \iff x = \cos y, \quad -1 \le x \le 1, \quad 0 \le y \le \pi$$

$$q_{val} \quad \mathbf{I} + \mathbf{I}$$

$$y = \tan^{-1} x \iff x = \tan y, \quad -\infty < x < \infty, \quad -\frac{\pi}{2} < y < \frac{\pi}{2}$$

$$q_{val} \quad \mathbf{I} + \mathbf{I}$$

Inverse Trigonometric Functions

There are different conventions used for the ranges of the remaining functions. Sullivan and Miranda use

$$y = \cot^{-1} x \iff x = \cot y, \quad -\infty < x < \infty, \quad 0 < y < \pi$$

$$\mathbf{I} \quad \mathbf{x} \in \mathbf{T}$$

$$y = \csc^{-1} x \iff x = \csc y, \quad |x| \ge 1, \quad y \in \left(-\pi, -\frac{\pi}{2}\right] \cup \left(0, \frac{\pi}{2}\right]$$

$$\mathbf{y} = \sec^{-1} x \iff x = \sec y, \quad |x| \ge 1, \quad y \in \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$$

$$\mathbf{q} \text{ and } \mathbf{I} \quad \text{and } \mathbf{I}$$

Derivative of the Inverse Sine

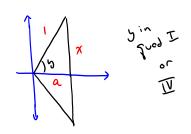
Use implicit differentiation to find $\frac{d}{dx} \sin^{-1} x$, and determine the interval over which $y = \sin^{-1} x$ is differentiable.

$$y = \sin^{2} x \Rightarrow x = \sin y \quad \text{with} \quad -\frac{\pi}{2} \in y \in \frac{\pi}{2}$$
Take $\frac{d}{dx}$ of this relation.
 $\frac{d}{dx} x = \frac{d}{dx} \sin y$
croin rule
 $1 = \cos y \frac{dy}{dx}$
For y such that $\cos y \neq 0$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

Let's find
$$Cos(sin'x)$$
 as an
algebraic expression.
 $-T/z \le y \le \frac{T}{2}$
opp $\rightarrow \frac{x}{1} = Sin y$
hype $\rightarrow \frac{x}{1} = Sin y$

f



From the triangle
$$a^2 + x^2 = |^2 \Rightarrow a^2 = 1 - x^2$$

 $Cos(Sin^2 x) = \frac{\sqrt{1 - x^2}}{1} + \frac{aa}{hyp} = \frac{\sqrt{1 - x^2}}{1 - x^2}$

 $\frac{d\gamma}{dx} = \frac{1}{C_{or}(\sin^{2}x)} = \frac{1}{\sqrt{1-x^{2}}} \qquad (-x^{2} > 0)$ S٥ 1×1 <1 $\frac{d}{dx} \sin^2 x = \frac{1}{\sqrt{1-x^2}} , -1 < x < 1$

Examples

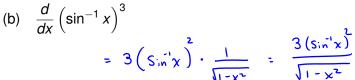


Evaluate each derivative

(a)
$$\frac{d}{dx}\sin^{-1}(e^x) = \frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x$$

= $\frac{e^x}{\sqrt{1-e^{2x}}}$

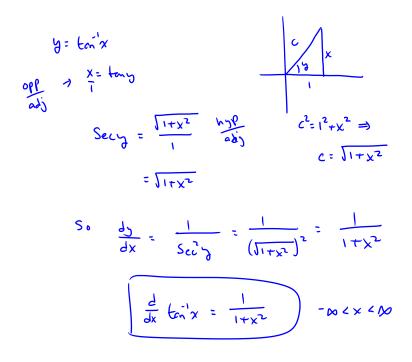
Chain rule



Derivative of the Inverse Tangent

Use implicit differentiation to find $\frac{d}{dx} \tan^{-1} x$, and determine the interval over which $y = \tan^{-1} x$ is differentiable.

$$y = bon' x \implies x = bony \quad with \quad -\frac{\pi}{2} < y < \frac{\pi}{2}$$
$$\frac{d}{dx} x = \frac{d}{dx} tony$$
$$1 = Sec'y \cdot \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{1}{Sec'y}$$
$$\frac{dy}{dx} = \frac{1}{Sec'y}$$



An alterative opproach:

 $\frac{dy}{dx} = \frac{1}{Sec^2y}$

ton 0+1= Sec 0, so Recall Seily = It ton y , y=ten x = 1+ ten (ten x) = 1+x2 50 again $\frac{dy}{dx} = \frac{1}{1 \pm x^2}$

Questions
Find
$$\frac{d^2y}{dx^2}$$
 where $y = \tan^{-1} x$.

$$\frac{d}{dx} \tan' x = \frac{1}{1+x^2}$$

.

(a)
$$\frac{d^2y}{dx^2} = \frac{-2x}{(1+x^2)^2}$$

(b)
$$\frac{d^2y}{dx^2} = \left(\frac{1}{1+x^2}\right)^2$$

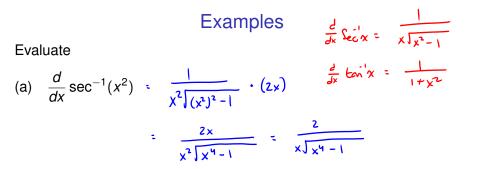
(c)
$$\frac{d^2y}{dx^2} = \frac{x^2 + 1 - 2x}{(1 + x^2)^2}$$

(d)
$$\frac{d^2y}{dx^2} = \frac{2x}{(1+x^2)^2}$$

Derivative of the Inverse Secant

Theorem: If $f(x) = \sec^{-1} x$, then *f* is differentiable for all |x| > 1 and

$$f'(x) = \frac{d}{dx} \sec^{-1} x = \frac{1}{x\sqrt{x^2 - 1}}.$$



(b)
$$\frac{d}{dx} \tan^{-1}(\sec x)$$

= $\frac{1}{1 + (\sec x)^2}$. Secx $\tan x = \frac{\sec x \tan x}{1 + \sec^2 x}$

The Remaining Inverse Functions

Due to the trigonometric cofunction identities, it can be shown that

$$\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$$

 $\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x$

and

$$\csc^{-1} x = \frac{\pi}{2} - \sec^{-1} x$$

Derivatives of Inverse Trig Functions

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, \qquad \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$
$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}, \qquad \frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$$
$$\frac{d}{dx}\sec^{-1}x = \frac{1}{x\sqrt{x^2-1}}, \qquad \frac{d}{dx}\csc^{-1}x = -\frac{1}{x\sqrt{x^2-1}}$$