Sept. 30 Math 1190 sec. 52 Fall 2016

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

Inverse Functions Suppose $y=f(x)$ and $x=g(y)$ are inverse functions-i.e. $(g \circ f)(x)=g(f(x))=x$ for all x in the domain of f.

Note: As inverse functions, if

$$
f\left(x_{0}\right)=y_{0} \quad \text { then } g\left(y_{0}\right)=x_{0}
$$

This means that
$\left(x_{0}, y_{0}\right)$ is a point on the graph of f, and
$\left(y_{0}, x_{0}\right)$ is a point on the graph of g.

Derivatives of Inverse Functions

Theorem: Let f be differentiable on an open interval containing the number x_{0}. If $f^{\prime}\left(x_{0}\right) \neq 0$, then g is differentiable at $y_{0}=f\left(x_{0}\right)$. Moreover

$$
\frac{d}{d y} g\left(y_{0}\right)=g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Note that this refers to a pair $\left(x_{0}, y_{0}\right)$ on the graph of f-i.e. $\left(y_{0}, x_{0}\right)$ on the graph of g. The slope of the curve of f at this point is the reciprocal of the slope of the curve of g at the associated point.

Example
The function $f(x)=x^{7}+x+1$ has an inverse function g. Determine $g^{\prime}(3)$.

$$
g^{\prime}(3)=\frac{1}{f^{\prime}\left(x_{0}\right)} \text { if } f\left(x_{0}\right)=3
$$

we reed to find the number x_{0}. we need

$$
f\left(x_{0}\right)=3 \Rightarrow 3=x_{0}^{7}+x_{0}+1
$$

By observation (ie. clever guessing) $x_{0}=1$.

$$
g^{\prime}(3)=\frac{1}{f^{\prime}(1)}
$$

$$
\begin{gathered}
f(x)=x^{7}+x+1 \Rightarrow f^{\prime}(x)=7 x^{6}+1+0=7 x^{6}+1 \\
f^{\prime}(1)=7(1)^{6}+1=7+1=8
\end{gathered}
$$

so

$$
g^{\prime}(3)=\frac{1}{f^{\prime}(1)}=\frac{1}{8}
$$

Inverse Trigonometric Functions

Recall the definitions of the inverse trigonometric functions.

$$
\begin{gathered}
y=\sin ^{-1} x \Longleftrightarrow x=\sin y, \quad-1 \leq x \leq 1, \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \\
\begin{array}{l}
\text { quad } I \text { and IV }
\end{array} \\
y=\cos ^{-1} x \Longleftrightarrow x=\cos y, \quad-1 \leq x \leq 1, \quad 0 \leq y \leq \pi \\
\\
\begin{array}{ll}
\text { quad } I+\text { II }
\end{array} \\
y=\tan ^{-1} x \Longleftrightarrow x=\tan y, \quad-\infty<x<\infty, \\
\\
\\
\\
\\
\\
\\
\\
\\
\text { quad I and IV }
\end{gathered}
$$

Inverse Trigonometric Functions

There are different conventions used for the ranges of the remaining functions. Sullivan and Miranda use

$$
\begin{array}{r}
y=\cot ^{-1} x \quad \Longleftrightarrow \quad x=\cot y, \quad-\infty<x<\infty, \quad \begin{array}{r}
0<y<\pi \\
\text { quod } I \text { and III }
\end{array} \\
y=\csc ^{-1} x \quad x=\csc y, \quad|x| \geq 1, \quad y \in\left(-\pi,-\frac{\pi}{2}\right] \cup\left(0, \frac{\pi}{2}\right] \\
\text { quad III and I }
\end{array}
$$

Derivative of the Inverse Sine
Use implicit differentiation to find $\frac{d}{d x} \sin ^{-1} x$, and determine the interval over which $y=\sin ^{-1} x$ is differentiable.

$$
y=\sin ^{-1} \Rightarrow x=\sin y \quad \text { and } \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

Take $\frac{d}{d x}$ of both sides.

$$
\begin{aligned}
\frac{d}{d x} x & =\frac{d}{d x} \sin y \\
1 & =\cos y \cdot \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\cos y} \text { when } \quad \cos y \neq 0
\end{aligned}
$$

we need $\cos y$ in tans of $x . y=\sin ^{-1} x$ so
$\operatorname{Cor} y=\cos \left(\sin ^{-1} x\right)$ well write this as an algebraic expression in x

y in quad I or in good IV
$\cos y=\frac{\sqrt{1-x^{2}}}{1}=\sqrt{1-x^{2}}$

$$
\begin{aligned}
& a^{2}+x^{2}=1^{2} \\
& a^{2}=1-x^{2} \\
& a=\sqrt{1-x^{2}}
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{1}{\cos y} \text {, but } \cos y=\sqrt{1-x^{2}}
$$

hence $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$ for $1-x^{2}>0$

$$
1>x^{2} \Rightarrow|x|<1
$$

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}},-1<x<1
$$

Examples $\quad \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$
Evaluate each derivative
(a) $\frac{d}{d x} \sin ^{-1}\left(e^{x}\right)=\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x}=\frac{e^{x}}{\sqrt{1-e^{2 x}}}$ outside

$$
\begin{array}{cc}
f^{\prime}(u) & u^{\prime}(x)
\end{array}
$$

Derivative of the Inverse Tangent
Use implicit differentiation to find $\frac{d}{d x} \tan ^{-1} x$, and determine the interval over which $y=\tan ^{-1} x$ is differentiable.

$$
\begin{aligned}
y=\tan ^{-1} x & \Rightarrow x=\tan y \text { and }-\pi / 2<y 2 \pi / 2 \\
\frac{d}{d x} x & =\frac{d}{d x} \tan y \\
1 & =\sec ^{2} y \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{\sec ^{2} y}
\end{aligned}
$$

we reed $\sec y=\sec \left(\tan ^{-1} x\right)$ in tenons of x.
of y
adj

$$
\begin{aligned}
\frac{x}{1} & =\tan y \\
\sec y & =\frac{\sqrt{1+x^{2}}}{1} \frac{\text { hyp }}{a d j} \\
& =\sqrt{1+x^{2}} \\
& c^{2}=x^{2}+1^{2} \Rightarrow c=\sqrt{1+x^{2}} \\
\frac{d y}{d x} & =\frac{1}{(\sec y)^{2}}=\frac{1}{\left(\sqrt{1+x^{2}}\right)^{2}}=\frac{1}{1+x^{2}}
\end{aligned}
$$

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} \quad-\infty<x<\infty
$$

Questions

Find $\frac{d^{2} y}{d x^{2}}$ where $y=\tan ^{-1} x$.

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}
$$

(a)) $\frac{d^{2} y}{d x^{2}}=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$
(b) $\frac{d^{2} y}{d x^{2}}=\left(\frac{1}{1+x^{2}}\right)^{2}$
(c) $\frac{d^{2} y}{d x^{2}}=\frac{x^{2}+1-2 x}{\left(1+x^{2}\right)^{2}}$
(d) $\frac{d^{2} y}{d x^{2}}=\frac{2 x}{\left(1+x^{2}\right)^{2}}$

Derivative of the Inverse Secant

Theorem: If $f(x)=\sec ^{-1} x$, then f is differentiable for all $|x|>1$ and

$$
f^{\prime}(x)=\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}
$$

Examples $\quad \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$
Evaluate
(a)

$$
\begin{aligned}
\frac{d}{d x} \sec ^{-1}\left(x^{2}\right) & =\frac{1}{x^{2} \sqrt{\left(x^{2}\right)^{2}-1}} \cdot(2 x) \quad \frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}} \\
& =\frac{2 x}{x^{2} \sqrt{x^{4}-1}}=\frac{2}{x \sqrt{x^{4}-1}}
\end{aligned}
$$

(b) $\frac{d}{d x} \tan ^{-1}(\sec x)=\frac{1}{1+(\sec x)^{2}} \cdot \sec x \tan x=\frac{\sec x \tan x}{1+\sec ^{2} x}$

The Remaining Inverse Functions

Due to the trigonometric cofunction identities, it can be shown that

$$
\begin{aligned}
& \cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x \\
& \cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x
\end{aligned}
$$

and

$$
\csc ^{-1} x=\frac{\pi}{2}-\sec ^{-1} x
$$

Derivatives of Inverse Trig Functions

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}, & \frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}, & \frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}, & \frac{d}{d x} \csc ^{-1} x=-\frac{1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

