September 30 Math 2306 sec 51 Fall 2015

Section 4.4: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions including polynomials, exponentials, sines/cosines, and sums or products of these.

The method is to assume y_p has the same general *form* as g with undetermined coefficients.

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

1 / 27

Examples of Forms of y_p based on g (Trial Guesses)

(a)
$$g(x) = 1$$
 $y_p = A$

(b)
$$g(x) = x - 7$$
 $y_p = Ax + B$

(c)
$$g(x) = 5x$$
 $y_p = Ax + B$

(d)
$$g(x) = 3x^3 - 5$$
 $y_D = Ax^3 + Bx^2 + Cx + D$

More Trial Guesses

(e)
$$g(x) = xe^{3x}$$
 $y_p = (Ax + B)e^{3x}$

(f)
$$g(x) = \cos(7x)$$
 $y_p = A\cos(7x) + B\sin(7x)$

(g)
$$g(x) = \sin(2x) - \cos(4x)$$

 $y_p = A\sin(2x) + B\cos(2x) + C\sin(4x) + D\cos(4x)$

(h)
$$g(x) = x^2 \sin(3x)$$

 $y_p = (Ax^2 + Bx + C)\sin(3x) + (Dx^2 + Ex + F)\cos(3x)$

Still More Trial Guesses

(i)
$$g(x) = e^x \cos(2x)$$
 $\forall \rho : A e^x Cos(2x) + B e^x Sin(2x)$

(k)
$$g(x) = xe^{-x}\sin(\pi x)$$

$$g_{\rho} = (A_{X+}G)e^{-x}S_{r}(\pi x) + (C_{X+}D)e^{-x}C_{G}(\pi x)$$

The Superposition Principle

Find the general solution of the nonhomogeneous equation

$$y'' - y' = 20\sin(2x) + 4e^{-5x}$$

On 9/28/15, we found that

$$y_p = \frac{2}{15}e^{-5x}$$
 is a particular solution of $y'' - y' = 4e^{-5x}$

and $y_p = -4\sin(2x) + 2\cos(2x)$ is a particular solution of $y'' - y' = 20\sin(2x)$

The principle of super position tells us that yp = yr, + yrz

where
$$y_{\rho_2} = \frac{2}{15} e^{-Sx}$$
 and $y_{\rho_2} = -4 \sin(2x) + 2 \log(2x)$

To find the general solution, we need yo.

Characteristic Eqn:
$$M^2 - M = 0$$
 $M_1 = 0$ $M_2 = 1$

A Glitch!

$$y'' - y' = 3e^{x}$$

$$3(x) = 3e^{x}, \text{ suppose } y_{p} = Ae^{x}$$

$$y_{p}' = Ae^{x}, \text{ suppose } y_{p} = Ae^{x}$$

$$y_{p}'' - y_{p}' = 3e^{x}$$

$$Ae^{x} - Ae^{x} = 3e^{x}$$

$$O \cdot e^{x} = 3e^{x}$$

There is a fix: Multiply the guess by x" where n is the smallest positive integer for which x"ex does not solve the honogeneous Eqn.

Here n=1 since xex does not solve y"-y'=0.

Sp" - Sp = 3e

4□ > 4@ > 4 = > 4 = > = 99

10 / 27

We'll consider cases

Using superposition as needed, begin with assumption:

$$y_p = y_{p_1} + \cdots + y_{p_k}$$

where y_{p_i} has the same **general form** as $g_i(x)$.

Case I: y_p as first written has no part that duplicates the complementary solution y_c . Then this first form will suffice.

Case II: y_p has a term y_{p_i} that duplicates a term in the complementary solution y_c . Multiply that term by x^n , where n is the smallest positive integer that eliminates the duplication.

Case II Examples

Solve the ODE

$$y'' - 2y' + y = -4e^{x}$$
Get b_{c} : $y'' - 2y' + y = 0$

$$Characteristic egn: m^{2} - 2m + 1 = 0$$

$$(m-1)^{2} = 0 \Rightarrow m = 1$$

$$y_{1} = e^{x}, y_{2} = xe$$

$$y_{c} = C_{1} e^{x} + C_{2} \times e^{x}$$

$$y_{c} = C_{1} e^{x} + C_{2} \times e^{x}$$

Get up using undetermined (seff.

g(x)= -4 e First guess yp=Ae

This yp solves the homogeneous egn.

yp = Axex, this also solves the 2ng grees

honogeneous egn.

yp= Ax & this will work. 3rd grees

yp'= ZAxe + Axe ye" = 2A & + 2A x & + 2A x & + A x & = 2Ae + YAx e + Axe

So
$$y_p = -2x^2e^x$$

The general solution to $1h$ DE is
$$y = C_1 e^x + C_2 x e^x - 2x^2 e^x.$$

Find the form of the particular soluition

$$y'' - 4y' + 4y = \sin(4x) + xe^{2x}$$
Let $g_1(x) = \sin(4x)$, $g_2(x) = xe^{2x}$
Initial guesses who knowledge of you would be $g_1 = A \sin(4x) + B \cos(4x)$
and $g_2 = (Cx + D)e^{2x}$
Consider $g_2 = G_2 = G_3 = G_4$

Characteristic Eqn
$$m^2 - 4m + 4 = 0$$

 $(m-2)^2 = 0 \implies M=2$
repeated

 $y_1 = e^{-x}$ $y_2 = xe^{-x}$
 y_{p_1} is fine, y_{p_2} is not

 $y_{p_2} = (c_x + D)xe^{-x} = (c_x^3 + Dx^2)e^{-x}$

Find the form of the particular soluition

$$y''' - y'' + y' - y = \cos x + x^4$$

$$g_1 = \cos x, \quad g_2 = x^4$$

$$F_{r,r,s} = A \cos x + B \sin x$$

$$y_{p_1} = A \cos x + B \sin x$$

$$y_{p_2} = C x^4 + D x^3 + E x^2 + F x + G$$

Finding Sc:
$$m^3 - m^2 + m - 1 = 0$$
 $m_{2,3} = \pm i$
 $(m-1)(m^2+1) = 0$ $= 0 \pm 1i$

Modify yp,

$$y_{p_i} = \left(A C_{orx} + B_{Sinx} \right) \times$$

$$= A_{x} C_{orx} + B_{x} S_{inx} \qquad \text{this work}$$