September 30 Math 2306 sec 51 Fall 2015

Section 4.4: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions including polynomials, exponentials, sines/cosines, and sums or products of these.

The method is to assume y_{p} has the same general form as g with undetermined coefficients.

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Examples of Forms of y_{p} based on g (Trial Guesses)

(a) $g(x)=1 \quad y_{p}=A$
(b) $g(x)=x-7 \quad y_{p}=A x+B$
(c) $g(x)=5 x \quad y_{p}=A x+B$
(d) $g(x)=3 x^{3}-5 \quad y_{p}=A x^{3}+B x^{2}+C x+D$

More Trial Guesses

(e) $g(x)=x e^{3 x} \quad y_{p}=(A x+B) e^{3 x}$
(f) $g(x)=\cos (7 x) \quad y_{p}=A \cos (7 x)+B \sin (7 x)$
(g) $g(x)=\sin (2 x)-\cos (4 x)$
$y_{p}=A \sin (2 x)+B \cos (2 x)+C \sin (4 x)+D \cos (4 x)$
(h) $g(x)=x^{2} \sin (3 x)$

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)
$$

Still More Trial Guesses
(i) $g(x)=e^{x} \cos (2 x) \quad y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)$
(j) $g(x)=x^{3} e^{8 x}$ $y_{p}=\left(A x^{3}+B x^{2}+C x+D\right) e^{8 x}$
(k) $g(x)=x e^{-x} \sin (\pi x)$

$$
\pi x) \quad y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)
$$

The Superposition Principle

Find the general solution of the nonhomogeneous equation

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+4 e^{-5 x}
$$

On 9/28/15, we found that

$$
y_{p}=\frac{2}{15} e^{-5 x} \text { is a particular solution of } y^{\prime \prime}-y^{\prime}=4 e^{-5 x}
$$

and $y_{p}=-4 \sin (2 x)+2 \cos (2 x)$ is a particular solution of $y^{\prime \prime}-y^{\prime}=20 \sin (2 x)$

The principle of super position tells us the

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

where $y_{p_{1}}=\frac{2}{15} e^{-5 x}$ and

$$
\begin{aligned}
y_{p_{2}} & =-4 \sin (2 x)+2 \cos (2 x) \\
\text { ie. } y_{p} & =\frac{2}{15} e^{-5 x}-4 \sin (2 x)+2 \cos (2 x)
\end{aligned}
$$

To find the genera solution, we need $y c$.

Solve $y^{\prime \prime}-y^{\prime}=0$
Charaeteistic Eqn:

$$
\begin{array}{ll}
m^{2}-m=0 \\
m(m-1)=0 \Rightarrow & m_{1}=0 \\
m_{2}=1
\end{array}
$$

$$
\begin{gathered}
y_{1}=e^{0 x}=1, \quad y_{2}=e^{1 x}=e^{x} \\
y_{c}=c_{1}+c_{2} e^{x}
\end{gathered}
$$

The generd Solution is

$$
y=c_{1}+c_{2} e^{x}+\frac{2}{15} e^{-5 x}-4 \sin (2 x)+2 \cos (2 x)
$$

A Glitch!

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}=3 e^{x} \\
& g(x)=3 e^{x} \text {, suppose } y_{p}=A e^{x} \\
& y_{p}{ }^{\prime}=A e^{x}, y_{p}{ }^{\prime \prime}=A e^{x} \\
& y_{p}{ }^{\prime \prime}-y_{p}{ }^{\prime}=3 e^{x} \\
& A e^{x}-A e^{x}=3 e^{x}
\end{aligned}
$$

There is a fix: Multiply the guess by x^{n} where n is the smallest positive integer for which $x^{n} e^{x}$ does not solve the homogeneous En.

Here $n=1$ since $x e^{x}$ does rot solve $y^{\prime \prime}-y^{\prime}=0$.
Take $y_{p}=A x e^{x}$

$$
\begin{aligned}
& y_{p}^{\prime}=A e^{x}+A x e^{x} \\
& y_{p}^{\prime \prime}=A e^{x}+A e^{x}+A x e^{x}=2 A e^{x}+A x e^{x} \\
& y_{p}^{\prime \prime}-y_{p}^{\prime}=3 e^{x}
\end{aligned}
$$

$$
\begin{gathered}
2 A e^{x}+A x e^{x}-\left(A e^{x}+A x e^{x}\right)=3 e^{x} \\
(A-A) x e^{x}+(2 A-A) e^{x}=3 e^{x} \\
A e^{x}=3 e^{x} \\
A=3 \\
\text { so } y_{p}=3 x e^{x} \quad
\end{gathered}
$$

The genera solution to the $D E$ is

$$
y=c_{1}+c_{2} e^{x}+3 x e^{x}
$$

We'll consider cases

Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term by x^{n}, where n is the smallest positive integer that eliminates the duplication.

Case II Examples
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

Get $b_{c}: \quad y^{\prime \prime}-2 y^{\prime}+y=0$
Charactartic eqn: $\quad m^{2}-2 m+1=0$

$$
y_{1}=e^{x}, y_{2}=x e^{x} \quad(m-1)^{2}=0 \Rightarrow \begin{aligned}
& m=1 \\
& \text { repeated root }
\end{aligned}
$$

$$
y_{c}=c_{1} e^{x}+c_{2} x e^{x}
$$

Get typ using undetermined coff.

$$
g(x)=-4 e^{x} \quad \text { First guess } \quad y_{p}=A e^{x}
$$

This yo solves the homogeneous egg.
$2^{\text {nd }}$ guess $y_{p}=A x e^{x}$, this also solves the homogeneous ign.
3rd guess $y_{p}=A x^{2} e^{x}$ this will work.

$$
\begin{aligned}
y_{p}^{\prime} & =2 A x e^{x}+A x^{2} e^{x} \\
y_{p}^{\prime \prime} & =2 A e^{x}+2 A x e^{x}+2 A x e^{x}+A x^{2} e^{x} \\
& =2 A e^{x}+4 A x e^{x}+A x^{2} e^{x}
\end{aligned}
$$

$$
\begin{array}{r}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=-4 e^{x} \\
2 A e^{x}+4 A x e^{x}+A x^{2} e^{x}-2\left(2 A x e^{x}+A x^{2} e^{x}\right)+A x^{2} e^{x}=-4 e^{x} \\
(A-2 A+A) x^{2} e^{x}+(4 A-4 A) x e^{x}+2 A e^{x}=-4 e^{x} \\
2 A=-4 \Rightarrow A=-2
\end{array}
$$

So $y_{p}=-2 x^{2} e^{x}$
The genera solution to the DE is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x} .
$$

Find the form of the particular soluition

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

Let $g_{1}(x)=\sin (4 x), \quad g_{2}(x)=x e^{2 x}$
Initial guesses who knowledge of y_{c} world be

$$
y_{p_{1}}=A \sin (4 x)+B \cos (4 x)
$$

and

$$
y_{p_{2}}=(C x+D) e^{2 x}
$$

Consider $y_{c}: \quad y^{\prime \prime}-4 y^{\prime}+4 y=0$

Charectuistic Eqn $m^{2}-4 m+4=0$

$$
y_{1}=e^{2 x}, y_{2}=x e^{2 x}(m-2)^{2}=0 \Rightarrow \begin{gathered}
m=2 \\
\text { repeoted }
\end{gathered}
$$

$y_{p_{1}}$ is fine, $y_{p_{2}}$ is not

$$
y_{p_{2}}=(C x+D) x^{2} e^{2 x}=\left(C x^{3}+D x^{2}\right) e^{2 x}
$$

$$
y_{p}=A \sin (4 x)+B \cos (4 x)+\left(C x^{3}+D x^{2}\right) e^{2 x}
$$

Find the form of the particular soluition

$$
\begin{aligned}
& y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4} \\
& g_{1}=\cos x, \quad g_{2}=x^{4}
\end{aligned}
$$

First guess

$$
\begin{aligned}
& y_{p_{1}}=A \cos x+B \sin x \\
& y_{p_{2}}=C x^{4}+D x^{3}+E x^{2}+F x+G
\end{aligned}
$$

Finding y_{c} :

$$
\begin{array}{rlrl}
m^{3}-m^{2}+m-1 & =0 & m_{1}=1 \\
m^{2}(m-1)+m-1 & =0 & m_{2,3}= \pm i \\
(m-1)\left(m^{2}+1\right) & =0 & & =0 \pm 1 i
\end{array}
$$

$$
y_{1}=e^{x}, \quad y_{2}=\cos x, \quad y_{3}=\sin x
$$

Modity y_{p}

$$
\begin{aligned}
y_{p_{1}} & =(A \cos x+B \sin x) x \\
& =A x \cos x+B x \sin x \quad \text { thic will work }
\end{aligned}
$$

$$
y_{p}=A x \cos x+B x \sin x+C x^{4}+D x^{3}+E x^{2}+F x+G
$$

