September 4 Math 2306 sec 54 Fall 2015

Section 3.1 (1.3, and a peek at 3.2) Applications

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

We converted the statement into the IVP

$$
\frac{d A}{d t}+\frac{1}{100} A=10, \quad A(0)=0
$$

Its in standard form. $\quad P(t)=\frac{1}{100}$

$$
\int P(t) d t=\int \frac{1}{100} d t=\frac{1}{100} t, \mu=e^{\int P(t) d t}=e^{\frac{1}{100} t}
$$

$$
\begin{aligned}
e^{\frac{1}{100} t} \frac{d A}{d t}+\frac{1}{100} e^{\frac{1}{100} t} A & =10 e^{\frac{1}{100} t} \\
\frac{d}{d t}\left[e^{\frac{1}{100} t} A\right] & =10 e^{\frac{1}{100} t} \\
\int \frac{d}{d t}\left[e^{\frac{1}{100} t} A\right] d t & =\int 10 e^{\frac{1}{100} t} d t \\
e^{\frac{1}{100} t} A & =10 \cdot 100 e^{\frac{1}{100} t}+C \\
A & =1000+C e^{\frac{-1}{100} t}
\end{aligned}
$$

$$
\begin{array}{r}
A(0)=0 \Rightarrow A(0)=1000+C e^{0}=0 \\
C=-1000
\end{array}
$$

The count of salt in the tank at time t is

$$
A(t)=1000-1000 e^{\frac{-1}{100} t}
$$

$$
\text { At } \begin{aligned}
t=5, \quad A(5) & =1000\left(1-e^{\frac{-1}{100} \cdot 5}\right)=1000\left(1-e^{-0.05}\right) \\
& \approx 48.8
\end{aligned}
$$

$$
V=500 \mathrm{gal}
$$

S. the concentration in the tank o $t=S_{\mathrm{min}}$
is $C=\frac{48.8 \mathrm{lb}}{500 \mathrm{ga}} \approx 0.0975 \frac{\mathrm{lb}}{\mathrm{gel}}$

$$
r_{i} \neq r_{0}
$$

Suppose that instead, the mixture is pumped out at $10 \mathrm{gal} / \mathrm{min}$. Determine the differential equation satisfied by $A(t)$ under this new condition.

Incoming:
rate: $r_{i}=5 \frac{\mathrm{gal}}{\mathrm{min}}$
conc: $c_{i}=\frac{21 b}{8 a l}$

$$
V(t)=V(0) \mathrm{gd}+r_{i} \frac{\mathrm{gd}}{\min } t \min -r_{0} \frac{\mathrm{gd}}{\min } \cdot t \min
$$

$$
\begin{aligned}
& V(t)= 500+5 t-10 t=500-5 t \\
& \Rightarrow c_{0}=\frac{A}{500-5 t} \\
& \frac{d A}{d t}=r_{i} c_{i}-r_{0} c_{0}=5 \cdot 2-10 \cdot \frac{A}{500-5 t} \\
& \frac{d A}{d t}+\frac{2}{100-t} A=10
\end{aligned}
$$

A Nonlinear Modeling Problem

A population $P(t)$ of tilapia changes at a rate jointly proportional to the current population and the difference between the constant carrying capacity ${ }^{1} \mathrm{M}$ of the environment and the current population. Determine the differential equation satsified by P.
rate of change of P is $\frac{d P}{d t}$
jointly proportioned to P and the diffanena between P and M is $k P(M-P)$ The $D E$ is $\quad \frac{d P}{d t}=k P(M-P)$.
${ }^{1}$ The carrying capacity is the maximum number of individuals that the environment can support due to limitation of space and resources.

Logistic Differential Equation
The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
Solve this equation ${ }^{2}$ and show that for any $P(0)>0, P \rightarrow M$ as $t \rightarrow \infty$.

$$
\begin{aligned}
& \frac{d P}{d t}=k P(M-P) \Rightarrow \frac{1}{P(M-P)} \frac{d P}{d t} d t=k d t \\
& \int \frac{1}{P(M-P)} d P=\int k d t
\end{aligned}
$$

${ }^{2}$ The partial fraction decomposition

$$
\frac{1}{P(M-P)}=\frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right)
$$

is useful.

$$
\begin{aligned}
\int \frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right) d P & =\int k d t \\
\int\left(\frac{1}{P}+\frac{1}{M-P}\right) d P & =\int k M d t=k M t+C \\
\ln |P|-\ln |M-P| & =k M t+C
\end{aligned}
$$

well finish next time.

