September 5 MATH 1113 sec. 52 Fall 2018

Chapters 3 \& 4: Introduction to Algebraic Functions

For much of the remainder of this course, we will be studying functions that are commonly used in almost all disciplines to model processes. Functions that fall into the category of algebraic functions include, polynomials, rational functions, and functions that involve fractional powers. We'll start with

Polynomials.

Polynomials

Definition: A polynomial in a variable x is an expression of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0},
$$

where n is a nonegative integer, and the numbers $a_{0}, a_{1}, \ldots, a_{n}$ are called the coefficients.

We will assume that the coefficients are real numbers (typically known), and that x is a real valued variable.

Definition: A polynomial equation is one of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}=0 .
$$

Definition: A polynomial function f is one defined by

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} .
$$

Some Key Characteristics

Suppose $n \geq 1$, and $a_{n} \neq 0$. Given a polynomial function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

- the degree of f is the value n.
- the number a_{n} is called the leading coefficient, and the term $a_{n} x^{n}$ is called the leading term.
- the domain of a polynomial function is the set of all real numbers.
- Polynomial functions are continuous and smooth. The graph of a polynomial will not have any gaps/jumps, holes, vertical asymptotes, or sharp corners.

Constant Functions

Constant Functions: If $a_{0} \neq 0$, the constant function $f(x)=a_{0}$ is a polynomial of degree zero.

The Zero Polynomial: The function $f(x)=0$ is a polynomial. It does not have a degree ${ }^{1}$.

[^0]
Question

Recall that a polynomial function has the form

$$
\begin{aligned}
& f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} . \\
& g(x)=a_{1} x^{\prime}+a_{0} \text { where } a_{1}=2 \text { and } a_{0}=-1
\end{aligned}
$$

Let $g(x)=2 x-1$. Which of the following is true?
(a) The function g IS NOT a polynomial because it is not called $f(x)$.
(b) The function g IS a polynomial function, and its degree is 1.
(c) The function g IS NOT a polynomial because its graph is a line.
(d) The function g IS a polynomial function, but it does not have a degree.
(e) The function g IS NOT a polynomial because it doesn't have an x^{2} term.

Lines and Quadratics

A linear function $f(x)=m x+b$ is a polynomial. If $m \neq 0$, then its degree is 1 .

Definition: A quadratic function is a second degree polynomial $f(x)=a x^{2}+b x+c$ where $a \neq 0$.

It is assumed that we are already familiar with the basics of quadratic functions and quadratic equations. Here, we will review the main properties.

Section 3.2 \& 3.3: Quadratic Functions and Quadratic Equations

Definition: A quadratic equation in x is one that can be written in the form

$$
\begin{equation*}
a x^{2}+b x+c=0, \quad \text { where } \quad a \neq 0 \tag{1}
\end{equation*}
$$

We will say that the above is written in standard form.

If (1) has a real number solution x_{0}, then this number is called

- a root of the equation (1).
- It is also called a zero of the associated quadratic function $f(x)=a x^{2}+b x+c$.
- A zero of $f(x)=a x^{2}+b x+c$ is the location of an x-intercept to the graph of f.

Parabola

Figure: The graph of a quadratic is a parabola. It may open upward $(a>0)$ or downward $(a<0)$. It may have zero, one, or two x-intercepts.

Parabola

Figure: The graph of a quadratic function has a relative maximum or minimum called the vertex and is symmetric about the line $x=-\frac{b}{2 a}$. Every quadratic function can be graphed using transformations on the graph of $y=x^{2}$.

Finding Roots of Quadratics

First, a couple of theorems:
Theorem: The Zero Product Property For real numbers a and b,

$$
a b=0 \text { if and only if } a=0 \text { or } b=0
$$

Theorem: Principle of Square Roots For nonnegative real number k,

$$
x^{2}=k \quad \text { if and only if } x=\sqrt{k} \text { or } x=-\sqrt{k}
$$

Example
Find the x-intercepts of the fuction $f(x)=2 x^{2}+3 x-2$.
It's useful to know that $f(x)=(2 x-1)(x+2)$
we wish to find x such that $f(x)=0$.
If $f(x)=0$ then $(2 x-1)(x+2)=0$
By the zero product proputs,

$$
\begin{aligned}
& 2 x-1=0 \text { or } x+2=0 \\
& \text { if. } x=\frac{1}{2} \text { or } x=-2
\end{aligned}
$$

There are two x-intercepts $\left(\frac{1}{2}, 0\right)$ and $(-2,0)$

Question

Suppose we wish to solve the quadratic equation $x^{2}+x=6$, and we factor the left side as

$$
x(x+1)=6 .
$$

True/False It follows that $x=6$ or $x+1=6$.
This is false.
(a) True, but I'm not confident.
(b) True, and I am confident.
This is based on a
misunderstanding of the
Zero paduct property.
(c) False, but l'm not confident.

$$
\begin{aligned}
& \text { To solve, write } \\
& x^{2}+x-6=0 \text { then }
\end{aligned}
$$

(d) False, and I am confident.
use the zero product property wo factoring.

[^0]: ${ }^{1}$ Some author's will call the degree of the zero polynomial $-\infty$; other's will just say it is undefined.

