September 5 Math 3260 sec. 58 Fall 2017

Section 2.1: Matrix Operations

We can denote an $m \times n$ matrix A in one of several convenient forms

$$A = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}]$$

where a_{ij} , i = 1, ..., m, j = 1, ..., n is the entry in row *i* and column *j*. We call the entries a_{ij} the main diagonal of the matrix.

Some Arithmetic Scalar Multiplication: For $m \times n$ matrix $A = [a_{ij}]$ and scalar c

 $cA = [ca_{ij}].$

Matrix Addition: For $m \times n$ matrices $A = [a_{ij}]$ and $B = [b_{ij}]$

$$A+B=[a_{ij}+b_{ij}].$$

The sum of two matrices is only defined if they are of the same size.

Matrix Equality: Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal (i.e. A = B) provided

$$a_{ij} = b_{ij}$$
 for every $i = 1, \dots, m$ and $j = 1, \dots, n$.

September 1, 2017 2 / 46

Theorem: Properties

The $m \times n$ **zero matrix** has a zero in each entry. We'll denote this matrix as O (or $O_{m,n}$ if the size is not clear from the context).

Theorem: Let *A*, *B*, and *C* be matrices of the same size and *r* and *s* be scalars. Then

(i)
$$A + B = B + A$$

(iv) $r(A + B) = rA + rB$
(ii) $(A + B) + C = A + (B + C)$
(v) $(r + s)A = rA + sA$
(iii) $A + O = A$
(vi) $r(sA) = (rs)A = (sr)A$

September 1, 2017

3/46

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "**multiply vectors** in \mathbb{R}^n by A" defines a linear transformation (from \mathbb{R}^n to \mathbb{R}^m).

We wish to define matrix multiplication in such a way as to correspond to **function composition**. Thus if

$$S(\mathbf{x}) = B\mathbf{x}$$
, and $T(\mathbf{v}) = A\mathbf{v}$,

then

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = (AB)\mathbf{x}.$$

< 日 > < 同 > < 回 > < 回 > < □ > <

September 1, 2017

4/46

Matrix Multiplication

$$S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{n} \implies B \sim n \times p$$
$$T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \implies A \sim m \times n$$
$$T \circ S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{m} \implies AB \sim m \times p$$

$$B\mathbf{x} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_p\mathbf{b}_p \Longrightarrow$$
$$A(B\mathbf{x}) = x_1A\mathbf{b}_1 + x_2A\mathbf{b}_2 + \dots + x_pA\mathbf{b}_p \Longrightarrow$$

$$AB = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p]$$

The j^{th} column of *AB* is *A* times the j^{th} column of *B*.

- 2

Example

Compute the product AB where

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

Row-Column Rule for Computing the Matrix Product If $AB = C = [c_{ij}]$, then

$$c_{ij}=\sum_{k=1}^n a_{ik}b_{kj}.$$

(The *ij*th entry of the product is the *dot* product of *i*th row of *A* with the j^{th} column of *B*.)

For example:
$$\begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix} =$$

▲ロト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ + ○ へ ○ September 1, 2017 9 / 46

Theorem: Properties-Matrix Product

Let *A* be an $m \times n$ matrix. Let *r* be a scalar and *B* and *C* be matrices for which the indicated sums and products are defined. Then

September 1, 2017

10/46

(i) A(BC) = (AB)C

(ii)
$$A(B+C) = AB + AC$$

(iii)
$$(B+C)A = BA + CA$$

(iv) r(AB) = (rA)B = A(rB), and

(v) $I_m A = A = A I_n$

(1) Matrix multiplication **does not** commute! In general $AB \neq BA$

(2) The zero product property **does not** hold! That is, if AB = O, one **cannot** conclude that one of the matrices A or B is a zero matrix.

(3) There is no *cancelation law*. That is, AB = CB **does not** imply that *A* and *C* are equal.

< □ ▶ < 圕 ▶ < ヨ ▶ < ヨ ▶ = ● へ @ September 1, 2017 11 / 46

Compute *AB* and *BA* where
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$.

Compute the products *AB*, *CB*, and *BB* where $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$,

_

_

$$B = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}$$
, and $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

_

If *A* is square—meaning *A* is an $n \times n$ matrix for some $n \ge 2$, then the product *AA* is defined. For positive integer *k*, we'll define

$$A^k = AA^{k-1}.$$

< 日 > < 同 > < 回 > < 回 > < □ > <

September 1, 2017

14/46

We define $A^0 = I_n$.

Transpose

Definition: Let $A = [a_{ij}]$ be an $m \times n$ matrix. The **transpose** of A is the $n \times m$ matrix denoted and defined by

$$A^T = [a_{ji}].$$

For example, if

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
, then $A^T = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$.

September 1, 2017

15/46

Example

$$A = \begin{bmatrix} 5 & 5 \\ -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 4 \end{bmatrix}$$

Compute A^T , B^T , the transpose of the product $(AB)^T$, and the product $B^T A^T$.

$A = \begin{bmatrix} 5 & 5 \\ -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 4 \end{bmatrix}$

< □ → < □ → < 重 → < 重 → 重 の Q @ September 1, 2017 17 / 46

$A = \begin{bmatrix} 5 & 5 \\ -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 4 \end{bmatrix}$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで September 1, 2017 18 / 46

Theorem: Properties-Matrix Transposition

Let A and B be matrices such that the appropriate sums and products are defined, and let r be a scalar. Then

> September 1, 2017

19/46

(i) $(A^{T})^{T} = A$

(ii)
$$(A+B)^{T} = A^{T} + B^{T}$$

(iii) $(rA)^T = rA^T$

(iv) $(AB)^T = B^T A^T$

Section 2.2: Inverse of a Matrix

Consider the scalar equation ax = b. Provided $a \neq 0$, we can solve this explicity

$$x = a^{-1}b$$

where a^{-1} is the unique number such that $aa^{-1} = a^{-1}a = 1$.

If A is an $n \times n$ matrix, we seek an analog A^{-1} that satisfies the condition

$$A^{-1}A = AA^{-1} = I_n.$$

September 1, 2017

20/46

If such matrix A^{-1} exists, we'll say that A is **nonsingular** (a.k.a. *invertible*). Otherwise, we'll say that A is **singular**.

Theorem (2 × 2 case) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

If ad - bc = 0, then A is singular.

The quantity ad - bc is called the **determinant** of A and may be denoted in several ways

$$\det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}.$$

. . .

イロト 不得 トイヨト イヨト 二日

September 1, 2017

21/46

Find the inverse if possible

(a)
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$$

Theorem

If *A* is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

イロト イポト イヨト イヨト

Solve the system

Theorem

(i) If A is invertible, then A^{-1} is also invertible and

$$\left(A^{-1}\right)^{-1}=A.$$

(ii) If *A* and *B* are invertible $n \times n$ matrices, then the product *AB* is also invertible¹ with

$$(AB)^{-1} = B^{-1}A^{-1}.$$

(iii) If A is invertible, then so is A^{T} . Moreover

$$\left(\boldsymbol{A}^{T}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{T}.$$

Elementary Matrices

Definition: An **elementary** matrix is a square matrix obtained from the identity by performing one elementary row operation.

Examples:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

.

Action of Elementary Matrices

Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, and compute the following products

 E_1A , E_2A , and E_3A .

September 1, 2017 27 / 46

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで September 1, 2017 29 / 46

- Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),
- Each elementary matrix is invertible where the inverse undoes the row operation,
- Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

$$\operatorname{rref}(A) = E_k \cdots E_2 E_1 A.$$

イロト 不得 トイヨト イヨト

September 1, 2017

30/46

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_n . Moreover, if

$$\operatorname{rref}(A) = E_k \cdots E_2 E_1 A = I_n$$
, then $A = (E_k \cdots E_2 E_1)^{-1} I_n$.

That is,

$$A^{-1} = \left[(E_k \cdots E_2 E_1)^{-1} \right]^{-1} = E_k \cdots E_2 E_1.$$

The sequence of operations that reduces *A* to I_n , transforms I_n into A^{-1} .

This last observation—operations that take *A* to I_n also take I_n to A^{-1} —gives us a method for computing an inverse!

イロト 不得 トイヨト イヨト 二日

September 1, 2017

31/46

Algorithm for finding A^{-1}

To find the inverse of a given matrix A:

- Form the $n \times 2n$ augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$.
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- If rref(A) is *I*, then [A I] is row equivalent to [I A⁻¹], and the inverse A⁻¹ will be the last *n* columns of the reduced matrix.
- ▶ If rref(*A*) is NOT *I*, then *A* is not invertible.

Remarks: We don't need to know ahead of time if *A* is invertible to use this algorithm.

If A is singular, we can stop as soon as it's clear that $rref(A) \neq I$.

Examples: Find the Inverse if Possible

(a)
$$\begin{bmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4 \end{bmatrix}$$

<ロ > < 合 > < 言 > く 言 > 言 > う へ (~ September 1, 2017 34 / 46

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● へ ○ September 1, 2017 35 / 46

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● へ ○ September 1, 2017 36 / 46

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ▲ ■ かへで September 1, 2017 37 / 46

Examples: Find the Inverse if Possible

<ロ> <四> <四> <四> <四> <四</p>

September 1, 2017

38 / 46

(b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● へ ○ September 1, 2017 39 / 46

<ロ > < 合 > < 言 > く 言 > 言 > う へ (~ September 1, 2017 40 / 46

<ロ > < 合 > < 言 > く 言 > こ の へ () September 1, 2017 41 / 46

<ロ > < 合 > < 言 > く 言 > こ > う へ (~ September 1, 2017 42 / 46

<ロ > < 合 > < 言 > く 言 > こ > う へ (~ September 1, 2017 43 / 46

Solve the linear system if possible

<ロ > < 合 > < 言 > く 言 > こ の へ (September 1, 2017 45 / 46

<ロ > < 合 > < 言 > く 言 > こ の へ (September 1, 2017 46 / 46