September 7 MATH 1113 sec. 51 Fall 2018

Section 3.2 \& 3.3: Quadratic Functions and Quadratic Equations

To solve quadratic equations or to plot the graph of a quadratic function, it is useful to express a quadratic in a new form sometimes called vertex form.

If $f(x)=a(x-h)^{2}+k$,
then the graph of f has vertex at the point (h, k) and is symmetric about the vertical line $x=h$. Moreover, if f has a real zero x_{0}, then

$$
x_{0}=h+\sqrt{-\frac{k}{a}} \quad \text { or } \quad x_{0}=h-\sqrt{-\frac{k}{a}} .
$$

Completing the Square

We determined that if

$$
f(x)=a x^{2}+b x+c=a(x-h)^{2}+k
$$

then

$$
h=-\frac{b}{2 a} \quad \text { and } \quad k=\frac{4 c a-b^{2}}{4 a}
$$

Completing the Square
Let $f(x)=3 x^{2}-12 x+7$. Complete the square to write f in the form $f(x)=a(x-h)^{2}+k$.
we con follow a procedure.
(1) Separate the x, x^{2} terms and factor out a

$$
\begin{aligned}
3 x^{2}-12 x+7 & =\left(3 x^{2}-12 x\right)+7 \\
& =3\left(x^{2}-4 x\right)+7
\end{aligned}
$$

(2) Use $(x-h)^{2}=x^{2}-2 h x+h^{2}$, then add and subtract

$$
\begin{aligned}
& h^{2}=\left(\frac{-b}{2 a}\right)^{2} \\
& 3 x^{2}-12 x+7=3\left(x^{2}-4 x+\left(\frac{-4}{2}\right)^{2}-\left(\frac{-4}{2}\right)^{2}\right)+7
\end{aligned}
$$

$$
=3\left(x^{2}-4 x+4\right)-34+7
$$

(3) Then $x^{2}-\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}$ is $(x-h)^{2}$

$$
\begin{aligned}
3 x^{2}-12 x+7 & =3(x-2)^{2}-12+7 \\
& =3(x-2)^{2}-5
\end{aligned}
$$

So $f(x)=3(x-2)^{2}-5$

Note $a=3, b=-12, c=7$

$$
h=2 \text { and } k=-5
$$

$$
\begin{aligned}
& h=\frac{-b}{2 a}=\frac{-(-12)}{2 \cdot 3}=\frac{12}{6}=2 \\
& \begin{aligned}
k=\frac{4 a c-b^{2}}{4 a} & =\frac{4 \cdot 7 \cdot 3-12^{2}}{4 \cdot 3} \\
& =\frac{12(7-12)}{12}=7-12=-5
\end{aligned}
\end{aligned}
$$

Example
Find the zeros of the function $f(x)=3 x^{2}-12 x+7$, and find its minimum value.

$$
f(x)=3(x-2)^{2}-5
$$

The vertex is $(2,-5)$. The minimum value of f is -5 .

To find zeros, solve $f(x)=0$

$$
\begin{gathered}
3(x-2)^{2}-5=0 \\
3(x-2)^{2}=5
\end{gathered}
$$

$$
(x-2)^{2}=\frac{5}{3}
$$

By the principle of square roots

$$
x-2=\sqrt{\frac{5}{3}} \quad \text { or } \quad x-2=-\sqrt{\frac{5}{3}}
$$

Calling them x_{0} and x_{1}

$$
x_{0}=2+\sqrt{\frac{5}{3}} \text { and } x_{1}=2-\sqrt{\frac{5}{3}}
$$

The x-intercepts ane

$$
\begin{aligned}
& \text { intercepts ane } \\
& \left(2+\sqrt{\frac{5}{3}}, 0\right) \text { and }\left(2-\sqrt{\frac{5}{3}}, 0\right)
\end{aligned}
$$

Question

The quadratic function f has its vertex at $(-2,4)$ and is open downward. Which of the following could be the function f ?
(a) $f(x)=(x-2)^{2}+4$

$$
f(x)=a(x+2)^{2}+4
$$

a negative
(b) $f(x)=-3(x+2)^{2}-4$
(c) $f(x)=4-(x+2)^{2}=-(x+2)^{2}+4$
(d) $f(x)=-2(x-4)^{2}$
(e) None of the above functions has the right properties.

Discriminant

Given $a x^{2}+b x+c$, the discriminant of the quadratic is the number

$$
b^{2}-4 a c
$$

Theorem: The quadratic equation $a x^{2}+b x+c=0$ has
(a) no real solutions if $b^{2}-4 a c<0$
(b) one real solution if $b^{2}-4 a c=0$, and
(c) two distinct real solutions if $b^{2}-4 a c>0$.

Definition: A quadratic polynomial is called irreducible if it's discriminant is negative.

Question

The discriminant of $3 x^{2}-12 x+7$ is
(a) 60

$$
b^{2}-4 a c=(-12)^{2}-4 \cdot 3 \cdot 7
$$

(b) -228

$$
=12(12-7)=12.5=60
$$

(c) -60
(d) 228

Question

Suppose $f(x)=(x-h)^{2}+k$ and $k>0$ (i.e. k is positive). Which of the following must be true about the x-intercepts of f ?
(a) The point (h, k) is the only x-intercept.
(b) f has two different x-intercepts.

(C) f doesn't have any x-intercepts because the discriminant is $-4 k$ which is negative.
(d) Nothing can be said about x-intercepts without knowing the sign of h.

