September 7 MATH 1113 sec. 52 Fall 2018

Section 3.2 \& 3.3: Quadratic Functions and Quadratic Equations

To solve quadratic equations or to plot the graph of a quadratic function, it is useful to express a quadratic in a new form sometimes called vertex form.

$$
\text { If } f(x)=a(x-h)^{2}+k,
$$

then the graph of f has vertex at the point (h, k) and is symmetric about the vertical line $x=h$. Moreover, if f has a real zero x_{0}, then

$$
x_{0}=h+\sqrt{-\frac{k}{a}} \text { or } x_{0}=h-\sqrt{-\frac{k}{a}} .
$$

Completing the Square
If $f(x)=a(x-h)^{2}+k$ has a real zero x_{0}, show that

$$
x_{0}=h+\sqrt{-\frac{k}{a}} \quad \text { or } \quad x_{0}=h-\sqrt{-\frac{k}{a}} .
$$

If x_{0} is a zero of f, thin $f\left(x_{0}\right)=0$.
If

$$
a\left(x_{0}-h\right)^{2}+k=0 \Rightarrow a\left(x_{0}-h\right)^{2}=-k
$$

$\left(x_{0}-h\right)^{2}=\frac{-k}{a}$ by the principle of square roots

$$
\begin{aligned}
x_{0}-h & =\sqrt{\frac{-k}{a}} \\
\text { or } \quad x_{0}-h & =-\sqrt{\frac{-k}{a}}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x_{0}=h+\sqrt{\frac{-k}{a}} \\
& \text { or } \\
& x_{0}=h-\sqrt{\frac{-k}{a}}
\end{aligned}
$$

Completing the Square

The coefficients of the two forms are related. If

$$
f(x)=a x^{2}+b x+c=a(x-h)^{2}+k
$$

then

$$
h=-\frac{b}{2 a} \quad \text { and } \quad k=\frac{4 c a-b^{2}}{4 a}
$$

Completing the Square
Let $f(x)=3 x^{2}-12 x+7$. Complete the square to write f in the form $f(x)=a(x-h)^{2}+k$.
well follow a process
(1) Isolate the x, x^{2} terms and factor out a

$$
\begin{aligned}
3 x^{2}-12 x+7 & =\left(3 x^{2}-12 x\right)+7 & & -4=-2 h \\
& =3\left(x^{2}-4 x\right)+7 & & (-h)^{2}=\left(\frac{-4}{2}\right)^{2}
\end{aligned}
$$

(2) Since $(x-h)^{2}=x^{2}-2 h x+h^{2}$ we need to add and subtract $h^{2}=\left(\frac{-b}{2 a}\right)^{2}$

$$
3 x^{2}-12 x+7=3\left(x^{2}-4 x+\left(\frac{-4}{2}\right)^{2}-\left(\frac{-4}{2}\right)^{2}\right)+7
$$

$$
\begin{aligned}
& =3\left(x^{2}-4 x+4-4\right)+7 \\
& =3\left(x^{2}-4 x+4\right)-3 \cdot 4+7 \\
& =3(x-2)^{2}-12+7 \\
& =3(x-2)^{2}-5
\end{aligned}
$$

So vertex form is $f(x)=3(x-2)^{2}-5$

$$
a=3
$$

Note

$$
\begin{aligned}
h & =\frac{-b}{2 a} \\
& =\frac{-(-12)}{2 \cdot 3}=\frac{12}{6}=2
\end{aligned}
$$

$$
b=-12
$$

$$
c=7
$$

September 7, $2018 \quad 5 / 24$

$$
\begin{aligned}
& k=\frac{4 a c-b^{2}}{4 a}=\frac{4 \cdot 3 \cdot 7-(-12)^{2}}{4 \cdot 3} \\
&=\frac{12 \cdot 7-12 \cdot 12}{12}=\frac{12(7-12)}{12}=7-12 \\
&=-5
\end{aligned}
$$

Example
Find the zeros of the function $f(x)=3 x^{2}-12 x+7$, and find its minimum value.

$$
f(x)=3(x-2)^{2}-5 \text { The vertex is @ }(2,-5) \text {. }
$$

The minimum value of f is -5 .
If f has zeros then $f(x)=0$.
solving for x

$$
\begin{array}{r}
3(x-2)^{2}-5=0 \\
3(x-2)^{2}=5
\end{array}
$$

$$
(x-2)^{2}=\frac{5}{3}
$$

By the principle of square roots

$$
x-2=\sqrt{\frac{5}{3}} \text { or } x-2=-\sqrt{\frac{5}{3}}
$$

Calling the solutions x_{0} and x_{1}

$$
x_{0}=2+\sqrt{\frac{5}{3}} \text { and } x_{1}=2-\sqrt{\frac{5}{3}}
$$

Question

The quadratic function f has its vertex at $(-2,4)$ and is open downward. Which of the following could be the function f ?
(a) $f(x)=(x-2)^{2}+4$

$$
f(x)=a(x+2)^{2}+4
$$

(b) $f(x)=-3(x+2)^{2}-4$
(c) $f(x)=4-(x+2)^{2}=-(x+2)^{2}+4$
(d) $f(x)=-2(x-4)^{2}$
(e) None of the above functions has the right properties.

