September 7 Math 3260 sec. 57 Fall 2017

Section 2.1: Matrix Operations

We can denote an $m \times n$ matrix A in one of several convenient forms

$$A = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}]$$

where a_{ij} , i = 1, ..., m, j = 1, ..., n is the entry in row i and column j. We call the entries a_{ij} the main diagonal of the matrix.

Some Arithmetic

Scalar Multiplication: For $m \times n$ matrix $A = [a_{ij}]$ and scalar c

$$cA = [ca_{ij}].$$

Matrix Addition: For $m \times n$ matrices $A = [a_{ij}]$ and $B = [b_{ij}]$

$$A+B=[a_{ij}+b_{ij}].$$

The sum of two matrices is only defined if they are of the same size.

Matrix Equality: Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal (i.e. A = B) provided

$$a_{ij} = b_{ij}$$
 for every $i = 1, \dots, m$ and $j = 1, \dots, n$.

Theorem: Properties

The $m \times n$ **zero matrix** has a zero in each entry. We'll denote this matrix as O (or $O_{m,n}$ if the size is not clear from the context).

Theorem: Let A, B, and C be matrices of the same size and r and s be scalars. Then

(i)
$$A + B = B + A$$
 (iv) $r(A + B) = rA + rB$
(ii) $(A + B) + C = A + (B + C)$ (v) $(r + s)A = rA + sA$
(iii) $A + O = A$ (vi) $r(sA) = (rs)A = (sr)A$

3/47

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "multiply vectors in \mathbb{R}^n by A" defines a linear transformation (from \mathbb{R}^n to \mathbb{R}^m).

We wish to define matrix multiplication in such a way as to correspond to **function composition**. Thus if

$$S(\mathbf{x}) = B\mathbf{x}$$
, and $T(\mathbf{v}) = A\mathbf{v}$,

then

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = (AB)\mathbf{x}.$$

Matrix Multiplication

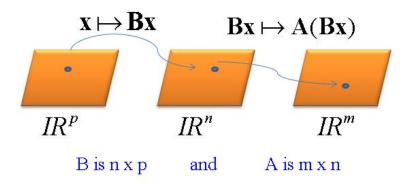


Figure: Composition requires the number of rows of *B* match the number of columns of *A*. Otherwise the product is **not defined**.

AB

mxn nxp the inside 1 must for 20 the defined

Matrix Multiplication

$$S: \mathbb{R}^p \longrightarrow \mathbb{R}^n \implies B \sim n \times p$$

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m \implies A \sim m \times n$$

$$T \circ S: \mathbb{R}^p \longrightarrow \mathbb{R}^m \implies AB \sim m \times p$$

$$B\mathbf{x} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_p \mathbf{b}_p \Longrightarrow$$

 $A(B\mathbf{x}) = x_1 A \mathbf{b}_1 + x_2 A \mathbf{b}_2 + \dots + x_p A \mathbf{b}_p \Longrightarrow$

$$AB = [A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad \cdots \quad A\mathbf{b}_p]$$

The j^{th} column of AB is A times the j^{th} column of B.

Example

A B will be $2 \times 2 \times 3$

Compute the product AB where

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$

AB =
$$\begin{bmatrix} A\vec{b}_1, & A\vec{b}_2, & A\vec{b}_3 \end{bmatrix}$$

 $A\vec{b}_1 = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + 1 \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \end{bmatrix} + \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$
 $A\vec{b}_2 = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ -4 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + (-4) \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 12 \\ -8 \end{bmatrix}$

$$A\vec{b}_{3} = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + 6 \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \end{bmatrix} + \begin{bmatrix} -18 \\ 12 \end{bmatrix}$$

$$= \begin{bmatrix} -16 \\ 8 \end{bmatrix}$$

$$AB = \begin{bmatrix} -1 & 12 & -16 \\ -2 & -8 & 8 \end{bmatrix}$$

Row-Column Rule for Computing the Matrix Product

If $AB = C = [c_{ij}]$, then

$$c_{ij}=\sum_{k=1}^{n}a_{ik}b_{kj}.$$

(The ij^{th} entry of the product is the *dot product* of i^{th} row of A with the j^{th} column of B.)

For example:
$$\begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix} = \begin{bmatrix} -1 & 12 & -16 \\ -2 & -8 & 8 \end{bmatrix}$$
$$2 \times 2 \times 3$$

$$2,1$$
 $-2.2+2(1) = -2$ $2,2$ $-2(0)+2(-4)=-8$

$$2,3$$
 $-7.2+2.6=-4+12=8$

Theorem: Properties-Matrix Product

Let A be an $m \times n$ matrix. Let r be a scalar and B and C be matrices for which the indicated sums and products are defined. Then

(i)
$$A(BC) = (AB)C$$

(ii)
$$A(B+C) = AB + AC$$

(iii)
$$(B+C)A = BA + CA$$

(iv)
$$r(AB) = (rA)B = A(rB)$$
, and

(v)
$$I_m A = A = A I_n$$

11 / 47

Caveats!

(1) Matrix multiplication **does not** commute! In general $AB \neq BA$

(2) The zero product property **does not** hold! That is, if AB = O, one **cannot** conclude that one of the matrices A or B is a zero matrix.

(3) There is no *cancelation law*. That is, AB = CB does not imply that A and C are equal.

Compute AB and BA where $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$.

$$AB = \begin{bmatrix} 1 & 7 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 6 \end{bmatrix}$$

$$BA = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ -1 & 4 \end{bmatrix} \neq AB$$

Compute the products *AB*, *CB*, and *BB* where $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$,

$$B = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}$$
, and $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$$

$$CB = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$$

$$BB = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Matrix Powers

If A is square—meaning A is an $n \times n$ matrix for some $n \ge 2$, then the product AA is defined. For positive integer k, we'll define

$$A^k = AA^{k-1}$$
.

We define $A^0 = I_n$.

Transpose

Definition: Let $A = [a_{ij}]$ be an $m \times n$ matrix. The **transpose** of A is the $n \times m$ matrix denoted and defined by

$$A^T = [a_{jj}].$$

For example, if

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
, then $A^T = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$.

16 / 47

Example

$$A = \begin{bmatrix} 5 & 5 \\ -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 4 \end{bmatrix}$$

Compute A^T , B^T , the transpose of the product $(AB)^T$, and the product B^TA^T

$$A^{T} = \begin{bmatrix} 5 & 1 \\ 5 & 4 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 3 & 4 \end{bmatrix}$$

$$B^{T}A^{T} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} 5 & -6 \\ 5 & 4 \\ 35 & 13 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 5 \\ -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 4 \end{bmatrix}$$

$$\left(AB\right)^{T} = \begin{bmatrix} 5 & -6 \\ 5 & 4 \\ 35 & 13 \end{bmatrix}$$

18 / 47

Theorem: Properties-Matrix Transposition

Let *A* and *B* be matrices such that the appropriate sums and products are defined, and let *r* be a scalar. Then

(i)
$$(A^T)^T = A$$

(ii)
$$(A + B)^T = A^T + B^T$$

(iii)
$$(rA)^T = rA^T$$

(iv)
$$(AB)^T = B^T A^T$$

Section 2.2: Inverse of a Matrix

Consider the scalar equation ax = b. Provided $a \neq 0$, we can solve this explicity

$$x = a^{-1}b$$

where a^{-1} is the unique number such that $aa^{-1} = a^{-1}a = 1$.

If A is an $n \times n$ matrix, we seek an analog A^{-1} that satisfies the condition

$$A^{-1}A = AA^{-1} = I_n.$$

If such matrix A^{-1} exists, we'll say that A is **nonsingular** (a.k.a. *invertible*). Otherwise, we'll say that A is **singular**.

Theorem $(2 \times 2 \text{ case})$

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If ad - bc = 0, then A is singular.

The quantity ad - bc is called the **determinant** of A and may be denoted in several ways

$$det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
.

Find the inverse if possible

(a)
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix}$$
 Here $ad - bc = 3.5 - (-1).7 = 17 \pm 0$

$$\vec{A} = \frac{1}{17} \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 5 | 17 & ^{-2} | 17 \\ 1 & 3 | 7 \end{bmatrix} \qquad \vec{A} \vec{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$$
 A is singular.
Here ad-be

Theorem

If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

A solution exists:
$$A\vec{x} = \vec{b}$$
 multiply on the left by

 A^{i}
 $A^{i} \times \vec{a} = \vec{A} \vec{b}$
 $A^{i} \times \vec{a} = \vec{A} \vec{b}$
 $A^{i} \times \vec{a} = \vec{A} \vec{b} \Rightarrow \vec{x} = \vec{A}$

Example

Solve the system

$$3x_{1} + 2x_{2} = -1$$

$$-x_{1} + 5x_{2} = 4$$

$$\begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

$$A^{2} = \frac{1}{17} \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

$$X = A^{2} = \frac{1}{17} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \frac{1}{17} \begin{bmatrix}$$

