September 7 Math 3260 sec. 57 Fall 2017

Section 2.1: Matrix Operations

We can denote an $m \times n$ matrix A in one of several convenient forms

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[a_{i j}\right]
$$

where $a_{i j}, \quad i=1, \ldots m, j=1, \ldots n$ is the entry in row i and column j. We call the entries $a_{i i}$ the main diagonal of the matrix.

Some Arithmetic

Scalar Multiplication: For $m \times n$ matrix $A=\left[a_{i j}\right]$ and scalar c

$$
c A=\left[c a_{i j}\right]
$$

Matrix Addition: For $m \times n$ matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$

$$
A+B=\left[a_{i j}+b_{i j}\right]
$$

The sum of two matrices is only defined if they are of the same size.

Matrix Equality: Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are equal (i.e. $A=B$) provided

$$
a_{i j}=b_{i j} \text { for every } i=1, \ldots, m \text { and } j=1, \ldots, n
$$

Theorem: Properties

The $m \times n$ zero matrix has a zero in each entry. We'll denote this matrix as O (or $O_{m, n}$ if the size is not clear from the context).

Theorem: Let A, B, and C be matrices of the same size and r and s be scalars. Then
(i) $A+B=B+A$
(ii) $(A+B)+C=A+(B+C)$
(iii) $A+O=A$
(iv) $r(A+B)=r A+r B$
(v) $(r+s) A=r A+s A$
(vi) $r(s A)=(r s) A=(s r) A$

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "multiply vectors in \mathbb{R}^{n} by $A^{\prime \prime}$ defines a linear transformation (from \mathbb{R}^{n} to \mathbb{R}^{m}).

We wish to define matrix multiplication in such a way as to correspond to function composition. Thus if

$$
S(\mathbf{x})=B \mathbf{x}, \quad \text { and } \quad T(\mathbf{v})=A \mathbf{v}
$$

then

$$
(T \circ S)(\mathbf{x})=T(S(\mathbf{x}))=A(B \mathbf{x})=(A B) \mathbf{x}
$$

Matrix Multiplication

Figure: Composition requires the number of rows of B match the number of columns of A. Otherwise the product is not defined.

Matrix Multiplication

$$
\begin{aligned}
S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{n} & \Longrightarrow B \sim n \times p \\
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} & \Longrightarrow A \sim m \times n \\
T \circ S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{m} & \Longrightarrow A B \sim m \times p
\end{aligned}
$$

$$
B \mathbf{x}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p} \Longrightarrow
$$

$$
A(B \mathbf{x})=x_{1} A \mathbf{b}_{1}+x_{2} A \mathbf{b}_{2}+\cdots+x_{p} A \mathbf{b}_{p} \Longrightarrow
$$

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

The $j^{\text {th }}$ column of $A B$ is A times the $j^{\text {th }}$ column of B.

Example
Compute the product $A B$ where

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right] \\
& A B=\left[\begin{array}{lll}
A \vec{b}_{1} & A \vec{b}_{2} & A \vec{b}_{3}
\end{array}\right] \\
& A \vec{b}_{1}=\left[\begin{array}{ll}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+1\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-4
\end{array}\right]+\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2
\end{array}\right] \\
& A \vec{b}_{2}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{c}
0 \\
-4
\end{array}\right]=0\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+(-4)\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
12 \\
-8
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
A \vec{b}_{3}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right]=2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+6\left[\begin{array}{c}
-3 \\
2
\end{array}\right]:\left[\begin{array}{c}
2 \\
-4
\end{array}\right]+\left[\begin{array}{c}
-18 \\
12
\end{array}\right] \\
=\left[\begin{array}{c}
-16 \\
8
\end{array}\right] \\
A B=\left[\begin{array}{ccc}
-1 & 12 & -16 \\
-2 & -8 & 8
\end{array}\right]
\end{gathered}
$$

Row-Column Rule for Computing the Matrix Product

 If $A B=C=\left[c_{i j}\right]$, then$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

(The $i j^{\text {th }}$ entry of the product is the dot product of $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B.)

For example: $\begin{gathered}{\left[\begin{array}{cc}1 & -3 \\ -2 & 2\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 2 \\ 1 & -4 & 6\end{array}\right]=\left[\begin{array}{ccc}-1 & 12 & -16 \\ -2 & -8 & 8\end{array}\right]} \\ 2 \times 3\end{gathered}$

$$
\begin{array}{llll}
1,1 & 1 \cdot 2+(-3) \cdot 1=-1 & 1,3 & 1 \cdot 2+(-3) \cdot 6=-16 \\
1,2 & 1 \cdot 0+(-3)(-4)=12
\end{array}
$$

$2,1-2 \cdot 2+2(1)=-2$
$2,2-2(0)+2(-4)=-8$

$$
2,3-2 \cdot 2+2 \cdot 6=-4+12=8
$$

Theorem: Properties-Matrix Product

Let A be an $m \times n$ matrix. Let r be a scalar and B and C be matrices for which the indicated sums and products are defined. Then
(i) $A(B C)=(A B) C$
(ii) $A(B+C)=A B+A C$
(iii) $(B+C) A=B A+C A$
(iv) $r(A B)=(r A) B=A(r B)$, and
(v) $I_{m} A=A=A I_{n}$

Caveats!

(1) Matrix multiplication does not commute! In general $A B \neq B A$
(2) The zero product property does not hold! That is, if $A B=O$, one cannot conclude that one of the matrices A or B is a zero matrix.
(3) There is no cancelation law. That is, $A B=C B$ does not imply that A and C are equal.

Compute $A B$ and $B A$ where $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$.

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & 5 \\
-3 & 6
\end{array}\right] \\
& B A=\left[\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
4 & 11 \\
-1 & 4
\end{array}\right] \neq A B
\end{aligned}
$$

Compute the products $A B, C B$, and $B B$ where $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, $B=\left[\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}\right]$, and $C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

$$
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right] \quad A B=C B
$$

$C B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right]$
even though

$$
A \neq C
$$

$$
B B=\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}_{B^{2}}
$$

$B B=O_{2 \times 2}$
even though

$$
B \neq O_{2 x 2}
$$

Matrix Powers

If A is square-meaning A is an $n \times n$ matrix for some $n \geq 2$, then the product $A A$ is defined. For positive integer k, we'll define

$$
A^{k}=A A^{k-1}
$$

We define $A^{0}=I_{n}$.

Transpose

Definition: Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix. The transpose of A is the $n \times m$ matrix denoted and defined by

$$
A^{T}=\left[a_{j j}\right] .
$$

For example, if

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \text { then } A^{T}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right] .
$$

Example

$$
A=\left[\begin{array}{cc}
5 & 5 \\
-1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
2 & 0 & 3 \\
-1 & 1 & 4
\end{array}\right]
$$

Compute A^{T}, B^{T}, the transpose of the product $(A B)^{T}$, and the product $B^{T} A^{T}$.

$$
\begin{gathered}
A^{\top}=\left[\begin{array}{ll}
5 & 1 \\
5 & 4
\end{array}\right] \quad B^{\top}=\left[\begin{array}{ll}
2 & -1 \\
0 & 1 \\
3 & 4
\end{array}\right] \\
B^{\top} A^{\top}=\left[\begin{array}{cc}
2 & -1 \\
0 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
5 & -1 \\
5 & 4
\end{array}\right]=\left[\begin{array}{cc}
5 & -6 \\
5 & 4 \\
35 & 13
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
A=\left[\begin{array}{cc}
5 & 5 \\
-1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
2 & 0 & 3 \\
-1 & 1 & 4
\end{array}\right] \\
A B=\left[\begin{array}{ll}
5 & 5 \\
-1 & 4
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 3 \\
-1 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
5 & 5 & 35 \\
-6 & 4 & 13
\end{array}\right] \\
(A B)^{\top}=\left[\begin{array}{cc}
5 & -6 \\
5 & 4 \\
35 & 13
\end{array}\right]
\end{gathered}
$$

Theorem: Properties-Matrix Transposition

Let A and B be matrices such that the appropriate sums and products are defined, and let r be a scalar. Then
(i) $\left(A^{T}\right)^{T}=A$
(ii) $(A+B)^{T}=A^{T}+B^{T}$
(iii) $(r A)^{T}=r A^{T}$
(iv) $(A B)^{T}=B^{T} A^{T}$

Section 2.2: Inverse of a Matrix

Consider the scalar equation $a x=b$. Provided $a \neq 0$, we can solve this explicity

$$
x=a^{-1} b
$$

where a^{-1} is the unique number such that $a a^{-1}=a^{-1} a=1$.
If A is an $n \times n$ matrix, we seek an analog A^{-1} that satisfies the condition

$$
A^{-1} A=A A^{-1}=I_{n}
$$

If such matrix A^{-1} exists, we'll say that A is nonsingular (a.k.a. invertible). Otherwise, we'll say that A is singular.

Theorem (2×2 case)
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then A is singular.

The quantity $a d-b c$ is called the determinant of A and may be denoted in several ways

$$
\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Find the inverse if possible
Here \quad ad $-b c=3 \cdot 5-(-1) \cdot 2=17 \neq 0$
(a) $A=\left[\begin{array}{cc}3 & 2 \\ -1 & 5\end{array}\right]$ A^{-1} exists

$$
A^{-1}=\frac{1}{17}\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
5 / 17 & -2 / 17 \\
1 / 17 & 3 / 17
\end{array}\right] \quad A^{-1} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(b) $A=\left[\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right] \quad A$ is singular!

Here $a d-b c$

$$
=3 \cdot 4-2 \cdot 6=0
$$

Theorem
If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

A solution exists: $A \vec{x}=\vec{b} \quad$ multiply on the left by A^{-1}

$$
\begin{aligned}
& A^{-1} A \vec{x}=A^{-1} \stackrel{\rightharpoonup}{4} \\
& I \vec{x}=A^{-1} \stackrel{\rightharpoonup}{b} \Rightarrow \vec{x}=A^{-1} \stackrel{b}{\sin u} I \vec{x}=\vec{x}
\end{aligned}
$$

There is only one: Suppose $A \vec{x}=\vec{b}$ and $A \vec{y}=\vec{b}$ solution

$$
\begin{aligned}
\Rightarrow & A \vec{x}=A \vec{y} \Rightarrow A^{-1} A \vec{x}=A^{-1} A \vec{y} \\
& \Rightarrow I \vec{x}=I \vec{y} \Rightarrow \vec{x}=\vec{y}
\end{aligned}
$$

Example

Solve the system

$$
\begin{aligned}
& -x_{1}+5 x_{2}=4 \\
& {\left[\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]} \\
& A^{-1}=\frac{1}{17}\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right] \begin{array}{c}
\text { from } \\
\text { before }
\end{array} \\
& \vec{X}=A^{-1} \vec{G} \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{17}\left[\begin{array}{ll}
5 & -2 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
4
\end{array}\right]=\frac{1}{17}\left[\begin{array}{c}
-13 \\
11
\end{array}\right] \\
& x_{1}=\frac{-13}{17} \text { and } x_{2}=\frac{11}{17}
\end{aligned}
$$

