Sept. 9 Math 1190 sec. 52 Fall 2016

Section 2.1: Rates of Change and the Derivative

Suppose a ball is dropped from the top of the Space Needle 605 feet high. According to Galileo's law, the distance s(t) feet the ball has fallen after *t* seconds is (neglecting wind drag)

 $s(t) = 16t^2$.

The position of the ball relative to the top of the tower is changing. We can consider the ball's velocity.

We define average velocity as

change in position \div change in time.

Instantaneous Velocity

What is the *instantaneous velocity* when t = 2?

The time interval has length 300, Well consider the average velocity over a time interval from t=2 to t=2+At for At=0.

ang vel =
$$\frac{\Delta S}{\Delta t} = \frac{S(2+\Delta t) - S(2)}{2+\Delta t - 2}$$

$$= \frac{\left| \left(\left(2 + \Delta t \right)^2 - 1 \right) \left(2 \right)^2}{\Delta t}$$

we can waside At very small.

Estimating instantaneous velocity using intervals of decreasing size...

Δt	$rac{s(2+\Delta t)-s(2)}{\Delta t}$	Δt	$rac{s(2+\Delta t)-s(2)}{\Delta t}$
1	80	1	48
0.1	65.6	-0.1	62.4
0.05	64.8	-0.05	63.2
0.01	64.16	-0.01	63.84

In fact lin S(2+Dt)-S(2) ۵t DEJO

Velocities appron to be setting close to 64 ft

= 64

Instantaneous Velocity

If we consider the independent variable *t* and dependent variable s = f(t), we note that the velocity has the form

$$\frac{\text{change in } s}{\text{change in } t} = \frac{\Delta s}{\Delta t}$$

Definition: We define the instantaneous velocity v (simply called *velocity*) at the time t_0 as

$$\nu = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0}$$

provided this limit exists.

Example

An object moves along the *x*-axis such that its distance *s* from the origin at time *t* is given by $s = \sqrt{2t}$. If *s* is in inches and *t* is in seconds, determine the object's velocity at t = 3 sec.

Velocity =
$$\lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0}$$
, Here, $t_0 = 3$ and
 $f(t) = \sqrt{2t}$
= $\lim_{t \to 3} \frac{\sqrt{2t} - \sqrt{2\cdot 3}}{t - 3}$
= $\lim_{t \to 3} \frac{\sqrt{2t} - \sqrt{6}}{t - 3}$ well use the
conjugate
= $\lim_{t \to 3} \left(\frac{\sqrt{2t} - \sqrt{6}}{t - 3} \right) \cdot \left(\frac{\sqrt{2t} + \sqrt{6}}{\sqrt{2t} + \sqrt{6}} \right)$

$$= \lim_{t \to 3} \frac{2t - 6}{(t - 3)(\overline{12t} + \sqrt{6})}$$

$$= \lim_{b \to 3} \frac{2(t-3)}{(t-3)(52t+56)}$$

$$= \lim_{6 \to 3} \frac{2}{\sqrt{2t} + \sqrt{6}} = \frac{2}{\sqrt{2\cdot 3} + \sqrt{6}}$$
$$= \frac{2}{\sqrt{6} + \sqrt{6}} = \frac{2}{2\sqrt{6}} = \frac{1}{\sqrt{6}}$$

The velocity @ t=3 seconds is $\frac{1}{16} \frac{in}{sec}$.

Question

A cannon ball is fired from the ground so that it's distance from the ground after *t* seconds is given by $s = 80t - 16t^2$ feet. Which of the following limits would be used to determine the ball's velocity at t = 3 seconds?

(a)
$$\lim_{t \to 0} \frac{80t - 16t^2 - 96}{t}$$

(b)
$$\lim_{t \to 3} \frac{80t - 16t^2 - 96}{t - 3}$$

(c)
$$\lim_{t \to 0} \frac{80t - 16t^2 - 96}{t - 3}$$

(d)
$$\lim_{t \to 3} \frac{80t - 16t^2 - 96}{t}$$

Observation

Note that the average velocity has the form $\frac{\Delta s}{\Delta t}$. This ratio (should) look familiar. If we think graphically, with s = f(t)

$$\frac{\Delta s}{\Delta t} = \frac{\mathsf{rise}}{\mathsf{run}} = \mathsf{slope}$$

The Tangent Line Problem

Given a graph of a function y = f(x):

A **secant** line is a line connecting two points $P = (x_0, y_0)$ and $Q = (x_1, y_1)$ on the graph. The slope of a secant line is

$$\frac{\Delta y}{\Delta x} = \frac{y_1 - y_0}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Recall that if P = (c, f(c)) and Q = (x, f(x)) are distinct points, we denoted the slope of the secant line

$$m_{sec} = \frac{f(x) - f(c)}{x - c}$$

We had defined the slope of the tangent line as

$$m_{tan} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 if this limit exists.

Example

Find the slope of the line tangent to the graph of $y = \frac{1}{y}$ at the point (-1, -1). $M_{ton} = \lim_{x \to c} \frac{f(x) - f(c)}{x}$ Here f(x)= 1/x and C = -1. $=\lim_{x \to -1} \frac{1}{x} - \frac{1}{-1}$ Note f(-1) = -1 = -1 $= \lim_{x \to -1} \frac{\frac{1}{x+1}}{x+1}$ $= \lim_{x \to -1} \frac{\frac{1}{x} + \frac{x}{x}}{\frac{x+1}{x}}$

$$= \lim_{X \to -1} \frac{\frac{1+x}{x}}{x+1}$$

$$= \lim_{X \to -1} \frac{1+x}{X} \cdot \left(\frac{1}{X+1}\right)$$

$$= \lim_{X \to -1} \frac{1 \pi X}{X(X, \pi 1)}$$

$$= \lim_{X \to -1} \frac{1}{X} = \frac{1}{-1} = -1$$

Mton = - | @ (-1,-1)

Example Continued...

Find the equation of the line tangent to the graph of $y = \frac{1}{y}$ at the point (-1, -1).The point is given as (-1,-1). We found the Slope Mton = -1. (III use point-slope form y-yo=m(x-xo).) $y_{-(-1)} = -1(x_{-(-1)})$ $y_{+1} = -x_{-1} \Rightarrow y_{=-x_{-2}}$

Tangent Line

Theorem: Let y = f(x) and let *c* be in the domain of *f*. If the slope m_{tan} exists at the point (c, f(c)), then the equation of the line tangent to the graph of *f* at this point is

$$y = m_{tan}(x - c) + f(c)$$

$$y - y_0 = m(x - x_0)$$

 $y - f(c) = m_{f(c)}(x - c)$

The Derivative

Let y = f(x). For $x \neq c$ we'll call $\frac{f(x) - f(c)}{x - c}$ the average rate of change of f on the interval from x to c.

We'll call

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 the rate of change of *f* at *c*

if this limit exists.

Definition: Let y = f(x) at let *c* be in the domain of *f*. The **derivative** of *f* at *c* is denoted f'(c) and is defined as

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

provided the limit exists.

The Derivative

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

In addition to the derivative of f at c, the notation f'(c) is read as

- ► f prime of c, or
- f prime at c.

At this point, we have several interpretations of this same **number** f'(c).

- ▶ as a velocity if *f* is the position of a moving object,
- as a rate of change of the function f when x = c,
- as the slope of the line tangent to the graph of f at (c, f(c)).