September 9 Math 2306 sec 51 Fall 2015

Section 3.1 (1.3, and a peek at 3.2) Applications

The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
Solve this equationand show that for any $P(0)=P_{0}>0, P \rightarrow M$ as $t \rightarrow \infty$.

We separated the variables and used the partial fraction decomposition $\frac{1}{P(M-P)}=\frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right)$ to conclude that

$$
\begin{aligned}
& \ln |P|-\ln |M-P|=M k t+C \\
& \ln \left|\frac{P}{M-P}\right|=M k t+C
\end{aligned}
$$

$$
\begin{aligned}
& e^{\ln \left|\frac{P}{M-P}\right|}=e^{M k t+C} \\
&\left|\frac{P}{M-P}\right|=e^{C} e^{M k t} \quad \text { Lit } A= \pm e^{C} \text { or } 0 \\
& \frac{P}{M-P}=A e^{M k t} \Rightarrow P=A e^{M k t}(M-P) \\
& \Rightarrow P\left(1+A e^{M k t}\right)=A M e^{M k t} \\
& P=\frac{A M e^{M k t}}{1+A e^{M k t}} \quad \text { set } P(0)=P_{0} \\
& \text { to find } A
\end{aligned}
$$

$$
\begin{gathered}
P(0)=\frac{A M e^{0}}{1+A e^{0}}=P_{0} \Rightarrow \frac{A M}{1+A}=P_{0} \\
A M=P_{0}(1+A) \Rightarrow A\left(M-P_{0}\right)=P_{0} \\
A=\frac{P_{0}}{M-P_{0}} \\
P=\frac{\frac{P_{0}}{M-P_{0}} M_{e}}{1+\frac{P_{0}}{M-P_{0}} e^{M k t}} \cdot \frac{M-P_{0}}{M-P_{0}}
\end{gathered}
$$

$$
P=\frac{P_{0} M e^{M k t}}{M-P_{0}+P_{0} e^{M k t}}
$$

Take $t \rightarrow \infty$

$$
\lim _{t \rightarrow \infty} P=\lim _{t+\infty} \frac{P_{0} M e^{M k t}}{M-P_{0}+P_{0} e^{m k t}}=\frac{\infty}{\infty}
$$

Use
l'Hopital's

$$
=\lim _{t \rightarrow \infty} \frac{P_{0} M(m x) e^{m y t}}{P_{0}(M x) e^{m L t}}
$$

$$
=\lim _{t \rightarrow \infty} M=M
$$

S. $P(t) \rightarrow M$ for any nonzero initial population.

Orisinde Equation

$$
\frac{d P}{d t}=k P(m-P) \quad k, m>0
$$

$P(0)=P_{0}>0$ (negative population doesint maw sense, so $P \geqslant 0$.,

- If $P>M \quad \frac{d P}{d t}<0$ population decreases to ward M
- If $P<M, \frac{d P}{d t}>0$ population increases toward M

