Cubic Spline Math 2335

To build the natural cubic spline $s(x)$ to interpolate the points $\left(x_{j}, y_{j}\right), j=1, \ldots, n$, define the constants

$$
M_{j}=s^{\prime \prime}\left(x_{j}\right) \quad \text { and } \quad h_{j}=x_{j+1}-x_{j} .
$$

Then the values M_{j} are the solutions to the system of equations:

$$
\begin{gathered}
M_{1}=M_{n}=0, \quad \text { and } \\
\frac{h_{j-1}}{6} M_{j-1}+\frac{h_{j}+h_{j-1}}{3} M_{j}+\frac{h_{j}}{6} M_{j+1}=\frac{y_{j+1}-y_{j}}{h_{j}}-\frac{y_{j}-y_{j-1}}{h_{j-1}} \\
\text { for } j=2, \ldots, n-1 .
\end{gathered}
$$

On each subinterval $\left[x_{j}, x_{j+1}\right]$

$$
\begin{gathered}
s(x)=\frac{M_{j}}{6 h_{j}}\left(x_{j+1}-x\right)^{3}+\frac{M_{j+1}}{6 h_{j}}\left(x-x_{j}\right)^{3}+\frac{y_{j}}{h_{j}}\left(x_{j+1}-x\right)+\frac{y_{j+1}}{h_{j}}\left(x-x_{j}\right)-\frac{h_{j}}{6}\left[M_{j}\left(x_{j+1}-x\right)+M_{j+1}\left(x-x_{j}\right)\right] \\
j=1, \ldots, n-1 .
\end{gathered}
$$

Note: The conditions $M_{1}=M_{n}=0$ are specific to the natural cubic spline. If a known function f is being approximated (as opposed to raw data), additional conditions must be given to obtain equations for the M_{i}. See Atkinson and Han section 4.3.3, or any of the following websites for further reading:
http://math.fullerton.edu/mathews/n2003/cubicsplinesmod.html
http://www.maths.lth.se/na/courses/FMN081/FMN081-06/lecture11.pdf

Note: For equally spaced points, $h_{j}=h=$ constant, the equations for M_{j} simplify to

$$
\begin{gathered}
M_{j-1}+4 M_{j}+M_{j+1}=\frac{6}{h^{2}}\left(y_{j+1}-2 y_{j}+y_{j-1}\right) \\
\text { for } \quad j=2, \ldots, n-1
\end{gathered}
$$

