Taylor Polynomials

Calculus I Project

The purpose of this project is to find a systematic way to approximate exotic function by polynomials. Polynomials have the advantage of being easy to evaluate (requiring only multiplication and addition/subtraction). We know that if a function f is differentiable at a point a, then the tangent line L at a approximates f at points very near to a. Unfortunately, a line has no bendiness to it. so the tangent line can only capture the slope of a function, not concavity or other features.

Let's observe that if f has tangent line L at a, then

$$
L(a)=f(a) \quad \text { and } \quad L^{\prime}(a)=f^{\prime}(a) .
$$

So L and its derivative of a match those of f. A natural extension of this is to find a polynomial P that satisfies three criteria

$$
P(a)=f(a), \quad P^{\prime}(a)=f^{\prime}(a), \quad \text { and } \quad P^{\prime \prime}(a)=f^{\prime \prime}(a) .
$$

To get three conditions, we'll need three coefficients. So the lowest degree will have to be 2 . Call P_{2} the quadratic approximation to f at a.
A. Find a quadratic $P_{2}(x)=A x^{2}+B x+C$ to approximate $f(x)=\sin (x)+\cos (x)$ near $a=0$. Produce a plot of your polynomial P together with the tangent line L and f. Give a detailed commentary on what you see.
B. For a value of $a \neq 0$, it is advantageous to write P in the form

$$
\begin{equation*}
P_{2}(x)=A(x-a)^{2}+B(x-a)+C . \tag{1}
\end{equation*}
$$

Written as such, we typically say that P is centered at a. For any function f that is twice differentiable at a, find a formula for the coefficients A, B, and C so that P_{2} is the quadratic approximation to f at a. (Expect your formulas to depend on f and its derivatives at the number a.)
C. Extend the idea to come up with four conditions that a cubic polynomial P_{3} should satisfy to be considered a cubic approximation to a function f at a point a. Write out the general form for a cubic (in the manner of (1)), and for a sufficiently differentiable function f find formulas for the coefficients of your cubic.
D. Determine a cubic approximation to the function $f(x)=x \sqrt{x+1}$ at the point $a=1$. Produce a plot of f together with P_{3}. Determine (using a calculator/computer or otherwise) an interval $\mathbf{I}=(1-\delta, 1+\delta)$ for which the error $\left|f(x)-P_{3}(x)\right|<10^{-3}$ for every number x in \mathbf{I}.
E. Generalize the results to any degree polynomial n. That is, let P_{n} be a polynomial of degree n centered at a. Note that a general $n^{t h}$ degree polynomial centered at a will have the form

$$
P_{n}(x)=b_{n}(x-a)^{n}+b_{n-1}(x-a)^{n-1}+\cdots+b_{1}(x-1)+b_{0} .
$$

(You might want to experiment with some small numbers say P_{4} and P_{5} and then generalize letting n be any positive integer.) Suppose that a function f is sufficiently differentiable at a. Then determine formulas for the coefficients of your polynomial in terms of f and its various derivatives at a. (Note: You can streamline your notation by including factorials. If you're not familiar with factorials, do a search.)
F. Give a nice graphical example of your findings from part E. In particular, pick an interesting function (sines and cosines work well), and plot it along with several polynomial approximations (for example $P_{2}, P_{3}, \ldots, P_{6}$). The function f and center a can be of your choosing. Give a commentary on what you what you observe. Consider commenting on the advantages as well as any weaknesses to using your polynomial approximations.

