Exam I Math 2335 sec. 51

Spring 2016

Name: (4 points) Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use your text book (Atkinson \& Han), one 8.5 " by 11 " page of written notes and a calculator. To use an e-version of the book, you must disable your wifi or 4 G (3G) access. NO use of internet access devices is permited. Illicit use of such items will result in a grade of zero on this exam and a formal allegation of academic misconduct. To receive full credit, you must follow the directions given and clearly justify your answer.
(1) The sine cardinal function $\operatorname{sinc}(x)$ is defined by

$$
\operatorname{sinc}(x)=\left\{\begin{array}{cl}
\frac{\sin x}{x}, & x \neq 0 \\
1, & x=0
\end{array}\right.
$$

The Taylor polynomial with remainder for $\operatorname{sinc}(x)$ is

$$
\operatorname{sinc}(x)=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n+1)!}+(-1)^{n+1} \frac{x^{2 n+2}}{(2 n+3)!} \cos (c)
$$

where c is some number between zero and x.
Find a bound on the error $\left|\operatorname{sinc}(x)-p_{4}(x)\right|$ when p_{4} is used to approximate $\operatorname{sinc}(x)$ for $0 \leq x \leq 1$. You may give your answer as an exact rational number or as a decimal with 6 digits to the right of the decimal place. Do not give your answer in scientific notation.

If $2 n=4$, then $n=2$. Hence

$$
\begin{aligned}
R_{4}(x) & =(-1)^{3} \frac{x^{4+2}}{(4+3)!} \cos (c) \quad \text { for some } c \\
& =\frac{-x^{6}}{7!} \cos (c)
\end{aligned}
$$

Note that if $0 \leq x \leq 1$, we hare $0 \leq c \leq 1$

$$
|x|^{6} \leqslant 1 \quad \text { and } \quad|\cos (c)| \leqslant 1
$$

Hence

$$
\begin{aligned}
& \left|\operatorname{sinc}(x)-p_{4}(x)\right|=\left|R_{4}(x)\right|=\left|-\frac{x^{6}}{7!} \cos c\right| \\
& \leq \frac{1}{7!} \cdot 1=\frac{1}{5040} \\
& \therefore 0.000198 \\
& \text { for } 0 \leq x \leq 1
\end{aligned}
$$

(2) The number $x_{A}=3.433$ is an approximation to the value x_{T} that is correctly rounded to the digits shown.
(a) Determine the largest interval that contains x_{T}.

$$
3.4325 \leqslant x_{T}<3.4335
$$

(b) Bound the error $\operatorname{Err}\left(x_{A}\right)$.

$$
\left|x_{T}-x_{A}\right| \leqslant 0.0005
$$

(c) Use the Mean value theorem* to bound the propagated error when $\ln \left(x_{A}\right)$ is used to approximate $\ln \left(x_{T}\right)$. Give 6 digits to the right of the decimal; do not give your answer in scientific notation.

$$
\text { For } f(x)=\ln x, \quad f^{\prime}(x)=\frac{1}{x}
$$

$$
\text { Since } 3.4325 \leqslant x_{T}<3.4335 \text {, If } c
$$

$$
\text { is between } x_{T} \text { and } x_{A} \text { we know that }
$$

$$
3.4325 \leq c<3.4335
$$

$$
\text { Thus }\left|f^{\prime}(c)\right| \leqslant \frac{1}{3.4325}
$$

We have

$$
\begin{aligned}
\text { have } \\
\begin{aligned}
\left|\ln \left(x_{T}\right)-\ln \left(x_{A}\right)\right| & =\left|f^{\prime}(c)\left(x_{T}-x_{m}\right)\right| \\
& \leqslant \frac{1}{3.4325} \cdot 0.0005 \doteq 0.000146
\end{aligned}
\end{aligned}
$$

[^0](3) Suppose we wish to determine the value of $\sqrt[3]{2}$.
(a) Let $f(x)=x^{3}-2$ and write out the Newton iteration formula. Simplify to a single rational expression.
\[

$$
\begin{aligned}
f^{\prime}(x)=3 x^{2}, \quad x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}-2}{3 x_{n}^{2}} \\
& =x_{n}-\frac{1}{3} x_{n}+\frac{2}{3 x_{n}^{2}}=\frac{2}{3} x_{n}+\frac{2}{3 x_{n}^{2}}
\end{aligned}
$$
\]

$$
x_{n+1}=\frac{2 x_{n}^{3}+2}{3 x_{n}^{2}}
$$

(b) Taking an initial guess of $x_{0}=1.00000$, compute the next four iterations of Newton's method. Fill in the table giving 6 digits to the right of the decimal.

n	x_{n}
0	1.000000
1	1.333333
2	1.263889
3	1.259933
4	1.259921

(c) Determine the number of iterations that would be required to find $\sqrt[3]{2}$ by the bisection method with an initial interval of $[a, b]=[1,2]$ correct to within an error of $\epsilon=10^{-9}$.

$$
n \geqslant \frac{\ln \left(\frac{2-1}{10^{-9}}\right)}{\ln 2} \doteq 29.9
$$

$$
\text { Hence } 30 \text { iterations are required. }
$$

(4) Suppose that we have the following information about a function $f(x)$.

$$
f(0)=3, \quad f^{\prime}(0)=2, \quad f^{\prime \prime}(0)=2, \quad f^{\prime \prime \prime}(0)=-3, \quad \text { and } \quad f^{(4)}(x)=\frac{2 x+8}{(x+1)^{4}}
$$

Write out the Taylor polynomial $p_{3}(x)$ of degree 3 and the remainder $R_{3}(x)$ for f centered at $a=0$.

$$
\begin{aligned}
& P_{3}(x)=\frac{f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}}{P_{3}(x)=3+2 x+x^{2}-\frac{1}{2} x^{3}} \\
& R_{3}(x)=\frac{x^{4}}{4!}\left(\frac{2 c+8}{(c+1)^{4}}\right) \quad \text { for some } c \\
& \text { between } x \text { and } 3 e 0 .
\end{aligned}
$$

(5) Using Taylor polynomials, algebra or function identities, find an alternative expression that will avoid loss of signficance errors when evaluated near the indicated x.
(a) $f(x)=\sqrt{x^{2}+x}-x, \quad x$ very large

$$
f(x)=\left(\sqrt{x^{2}+x}-x\right) \frac{\sqrt{x^{2}+x}+x}{\sqrt{x^{2}+x}+x}=\frac{x}{\sqrt{x^{2}+x}+x}
$$

(b) $g(x)=\frac{\operatorname{sinc}(x)-1}{x} \quad x \approx 0 \quad$ (Hint: see problem 1.)
From proheen \#1

$$
g(x)=\frac{-x}{3!}+\frac{x^{3}}{5!}+\ldots+(-1)^{n} \frac{x^{2 n-1}}{(2 n+1)!}+(-1)^{n+1} \frac{x^{2 n+1}}{(2 n+3)!} \cos c
$$

zeno and
(6) The cubic equation $x^{3}-x-1=0$ has one real root.
(a) Write out the Secant method iteration formula to find this root. (Simplify within reason.)

$$
\begin{aligned}
f(x)= & x^{3}-x-1 \\
x_{n+1}= & x_{n}-f\left(x_{n}\right) \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}=x_{n}-\left(x_{n}^{3}-x_{n}-1\right) \frac{x_{n}-x_{n-1}}{x_{n}^{3}-x_{n}-x_{n-1}^{3}+x_{n}} \\
& x_{n+1}=x_{n}-\frac{\left(x_{n}^{3}-x_{n}-1\right)\left(x_{n}-x_{n-1}\right)}{x_{n}^{3}-x_{n}-x_{n-1}^{3}+x_{n-1}}
\end{aligned}
$$

(b) Taking $x_{0}=1$ and $x_{1}=2$, compute the next two iterates x_{2} and x_{3} obtained using the Secant method. Give your answers as either exact rational numbers or decimal numbers with 6 digits to the right of the decimal.

$$
x_{2}=2-\frac{\left(2^{3}-2-1\right)(2-1)}{2^{3}-2-1^{3}+1}=\frac{7}{6}=1.166667
$$

$$
\begin{aligned}
x_{3}=x_{2}-\frac{\left(x_{2}^{3}-x_{2}-1\right)\left(x_{2}-2\right)}{x_{2}^{3}-x_{2}-2^{3}+2} & =\frac{302}{241} \\
& =1.253112
\end{aligned}
$$

[^0]: * $f(b)-f(a)=f^{\prime}(c)(b-a)$ for some c between a and b

