Exam II Math 2335 sec. 51

Spring 2016

Name: (4 points) Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use your text book (Atkinson \& Han), one 8.5 " by 11 " page of written notes and a calculator. To use an e-version of the book, you must disable your wifi or 4 G (3G) access. NO use of internet access devices is permited. Illicit use of such items will result in a grade of zero on this exam and a formal allegation of academic misconduct. To receive full credit, you must follow the directions given and clearly justify your answer.
(1) Determine all possible values of the numbers A and B such that the given function is a cubic spline on the interval $[1,3]$. (Hint: Consider the continuity conditions for a cubic spline.)

$$
s(x)= \begin{cases}x^{3}-3 x^{2}+2 x+A, & 1 \leq x \leq 2 \\ -x^{3}+9 x^{2}+B x+4, & 2 \leq x \leq 3\end{cases}
$$

By continuity of $s(x)$

$$
\lim _{x \rightarrow 2^{+}} S(x)=\lim _{x \rightarrow 2^{-}} S(x)
$$

So

$$
\begin{gathered}
2^{3}-3 \cdot 2^{2}+2 \cdot 2+A=-2^{3}+9 \cdot 2^{2}+B(2)+4 \\
8-12+4+A=-8+36+2 B+4 \\
A=32+2 B
\end{gathered}
$$

By continuity of $S^{\prime}(x)$

$$
\begin{aligned}
& \lim _{x \rightarrow 2}+s^{\prime}(x)=\lim _{x \rightarrow 2}-S^{\prime}(x) \\
& S^{\prime}(x)= \begin{cases}3 x^{2}-6 x+2, & 1 \leq x \leq 2 \\
-3 x^{2}+18 x+B, & 2 \leq x \leq 3\end{cases} \\
& 3 \cdot 2^{2}-6 \cdot 2+2=-3 \cdot 2^{2}+18 \cdot 2+B \\
& 12-12+2=-12+36+B \Rightarrow B=2-24=-22
\end{aligned}
$$

Then $A=32+2 B=32-44=-12$

There is one solution $A=-12, B=-22$.
(2) Consider the integral $\int_{0}^{4} \sqrt{1+x^{2}} d x$
(a) Approximate the integral with the trapezoid rule* $T_{4}(f)$. Give 5 digits to the right of the decimal. Do not give your answer in scientific notation.

$$
\begin{aligned}
h & =\frac{4-0}{4}=1 \quad x_{0}=0, x_{1}=1, x_{2}=2, x_{3}=3, x_{4}=4 \\
f(0) & =\sqrt{1}=1, f(1)=\sqrt{2}, f(2)=\sqrt{5}, f(3)=\sqrt{10}, f(4)=\sqrt{17} \\
T_{4}(f) & =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \\
& =\frac{1}{2}[1+2 \sqrt{2}+2 \sqrt{5}+2 \sqrt{10}+\sqrt{17}] \\
& =9.37411
\end{aligned}
$$

(b) Approximate the integral with Simpson's rule $S_{4}(f)$. Give 5 digits to the right of the decimal. Do not give your answer in scientific notation.

The same h, x_{i}, and function vales are used.

$$
\begin{aligned}
S_{4} & =\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \\
& =\frac{1}{3}[1+4 \sqrt{2}+2 \sqrt{5}+4 \sqrt{10}+\sqrt{17}] \\
& =9.30040
\end{aligned}
$$

*To receive credit, the set up details must be shown for both (a) and (b).
(3) Suppose we wish to interpolate f with $P_{3}(x)$ on the interval $[-1,1]$ where

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin x}{x}, & x \neq 0 \\
1, & x=0
\end{array} .\right.
$$

(a) It can be shown that $\left|f^{(4)}(x)\right| \leq \frac{1}{5}$ when $-1 \leq x \leq 1$. Find a bound on the error $\left|f(x)-P_{3}(x)\right|$ if the optimal error reducing nodes are used. Express the bound exactly or give 5 decimal digits.

$$
\begin{aligned}
& \text { For the Chebyshev nodes } \\
& \qquad\left|f(x)-P_{3}(x)\right| \leq \frac{L}{2^{3}} \text { where } L=\max \left|\frac{f^{(4)}(x)}{4!}\right| \\
& \text { Given }\left|f^{(4)}(x)\right| \leq \frac{1}{5}, L=\frac{1 / 5}{4!}=\frac{1}{5 \cdot 24}=\frac{1}{120}
\end{aligned}
$$

So

$$
\left|f(x)-p_{3}(x)\right| \leqslant \frac{\frac{1}{120}}{8}=\frac{1}{960}=0.00104
$$

(b) Suppose instead that equally spaced nodes are used. Find a bound on the error in this case ${ }^{\dagger}$. (Again, exact or with 5 decimal digits.)

$$
\text { For equally spared nodes } h=\frac{1-(-1)}{3}=\frac{2}{3}
$$

and

$$
\begin{aligned}
& \left|f(x)-P_{3}(x)\right|=\left|\Psi_{3}(x) \frac{f_{(c)}^{(4)}}{4!}\right| \quad \text { for some } c \text { in }[-1,1] . \\
& \left|\Psi_{3}(x)\right| \leqslant h^{4}=\left(\frac{2}{3}\right)^{4}=\frac{16}{81} \text { and } \frac{\left|f^{(4)}(x)\right|}{4!} \leq \frac{1}{120} \text { from (a) }
\end{aligned}
$$

So

$$
\left|f(x)-p_{3}(x)\right| \leqslant \frac{16}{81} \cdot \frac{1}{120}=\frac{2}{1215} \doteq 0.00165
$$

[^0](4) Consider the data given in the table.

x	0.1	0.2	0.3
$f(x)$	-0.23	-0.32	-0.36

Find $P_{2}(x)$ using the Newton divided differences formulation.

$$
\begin{aligned}
& f[0.1,0.2]=\frac{-0.32-(-0.23)}{0.2-0.1}=10(-0.09)=-0.9 \\
& f[0.2,0.3]=\frac{-0.36-(-0.32)}{0.3-0.2}=10(-0.04)=-0.4
\end{aligned}
$$

So

$$
\begin{aligned}
f[0.1,0.2,0.3] & =\frac{f[0.2,0.3]-f[0.1,0.2]}{0.3-0.1} \\
& =5(-0.4-(-0.9))=2.5
\end{aligned}
$$

$$
P_{2}(x)=f(0.1)+f[0.1,0.1](x-0.1)+f[0.1,0.2,0.3](x-0.1)(x-0.2)
$$

$$
P_{2}(x)=-0.23-0.9(x-0.1)+2.5(x-0.1)(x-0.2)
$$

(5) The integral $I(f)=\int_{a}^{b} f(x) d x$ was approximated using the trapezoid and Simpson's rule for several choices of equally spaced partitions. The results were recorded in the following tables.

$T_{2}(f)$	0.697996
$T_{4}(f)$	0.704834
$T_{8}(f)$	0.706539

$S_{2}(f)$	0.707201
$S_{4}(f)$	0.707113
$S_{8}(f)$	0.707107

(a) Compute the Richardson Extrapolation approximation R_{4} for the Trapezoid rule.

$$
\begin{aligned}
R_{4} & =\frac{1}{3}\left(4 T_{4}-T_{2}\right) \\
& =\frac{1}{3}(4.0 .704834-0.697996) \\
& =0.707113
\end{aligned}
$$

(b) Compute the Richardson Extrapolation approximation R_{4} for Simpson's rule.

$$
\begin{aligned}
R_{4} & =\frac{1}{15}\left(16 S_{4}-S_{2}\right) \\
& =\frac{1}{15}(16 \cdot 0.707113-0.702201) \\
& =0.707107
\end{aligned}
$$

(c) The Midpoint rule can be defined as $M_{n}=\frac{1}{2}\left(3 S_{2 n}-T_{n}\right)$. Compute M_{4}.

$$
\begin{array}{rl}
1 F & n=4, \text { then } 2 n=8 \\
M_{4} & =\frac{1}{2}\left(3 S_{8}-T_{4}\right) \\
& =\frac{1}{2}(3.0 .707107-0.704834) \\
& =0.708244
\end{array}
$$

(6) Suppose we wish to approximate the improper (but convergent) integral $\int_{-1}^{1} \frac{1}{\sqrt[4]{1-x^{2}}} d x$. (a) Explain clearly (and in plain English) why it is not possible to compute S_{n} for any even number $n=2,4, \ldots$ (Hint: Consider why the integral is improper.)

$$
\begin{aligned}
& \text { For any } n, x_{0}=-1 \text { and } x_{n}=1 \text {. with } \\
& \qquad f(x)=\frac{1}{\sqrt[4]{1-x^{2}}} \text {, neither } f(1) \text { nor } f(-1)
\end{aligned}
$$

are defined. Hens S_{n} can not be
computed as it requires these values.
(Code written to do this with crash.)
(b) Evaluate the integral using Gaussian quadrature $I_{2}(f)$. Give your answer with 5 digits to the right of the decimal.

$$
\begin{aligned}
& w_{1}=w_{2}=1 \text { and }-x_{1}=x_{2}=\frac{1}{\sqrt{3}} \\
& \text { with } f(x)=\frac{1}{\sqrt[4]{1-x^{2}}} \\
& I_{2}(f)=f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) \\
&=\frac{1}{\sqrt[4]{1-\left(-\frac{1}{\sqrt{3}}\right)^{2}}}+\frac{1}{\sqrt[4]{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}} \\
&=\frac{1}{\sqrt[4]{2 / 3}}+\frac{1}{\sqrt[4]{2 / 3}}=2\left(\frac{3}{2}\right)^{1 / 4} \stackrel{1}{=} 2.21336
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Recall $\left|\Psi_{3}(x)\right| \leq h^{4}$ for equally spaced nodes h units apart.

