Exam III Math 2253H sec. 5H

Fall 2014

Name:

Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature: _____

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are seven problems. The point value for each problem is listed with the problem. There are no notes, or books allowed and **no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam and may result in removal from this class. To receive full credit, you must clearly justify your answer and use proper notation.** (1) (15 points) A polynomial f has the given second derivative.

$$f''(x) = 2(x-1)^2(x+4)(x-5).$$

Determine the intervals on which f is concave up and the intervals on which f is concave down.

f" is always well defined. $f''(x)=0 \implies 0=z(x-i)^2(x+u)(x-5)$ $\Rightarrow x=1, x=-4 \text{ or } x=5$

f is concave up on $(-\infty, -4) \cup (\le, \infty)$. f is concave down on $(-4, 1) \cup (1, \le)$. (2) (15 points) Suppose f is a rational function with domain $\{x \mid x \neq 4\}$ and whose first derivative is

$$f'(x) = \frac{x(x+2)^2}{x-4}.$$

(a) Find all critical numbers of f. (Remember to consider the domain.)

$$f'(x)=0 \implies x(x+2)^2=0 \implies X=0 \text{ or } x=-2$$

 $f'(x) \cup ND \implies x-y=0 \implies X=y \quad (not in the domain)$
 $f her two critical numbers 0 and -2.$

(b) Determine the intervals on which f is increasing and the intervals on which f is decreasing.

f is increasing on $(-\infty, -2) \cup (-2, 0) \cup (4, \infty)$.

f is decreasing on ______.

(3) (10 points) For the given function and the specified interval, find the value of c that satisfies the conclusion of the Mean Value Theorem.

$$f(x) = \cos x + \sin x$$
 on $\left[0, \frac{\pi}{2}\right]$

f (x) = - Sinx + Cosx

$$f(\underline{\pi}) = Cor(\underline{\pi}) + Sin(\underline{\pi}) = 0 + 1 = 1$$

$$f(\underline{\pi}) = Cor(\delta) + Sin(\delta) = 1 + 0 = 1$$

$$f(\underline{\pi}) = Cor(\delta) + Sin(\delta) = 1 + 0 = 1$$

$$f'(c) = \frac{f(\underline{\pi}) - f(o)}{\underline{\pi} - o} \implies -\sin c + \cos c = 0$$
$$\implies \sin c = \cos c$$

There is one such value on [0, #] nonely

$$C = \frac{\pi}{4} .$$

(4) (15 points) Let $f(x) = \sqrt{x} - \frac{x}{4}$ for x > 0. Find the critical number of f and classify it as a local maximum or a local minimum.

$$f'(x) = \frac{1}{2Jx} - \frac{1}{4} \qquad f'(x) \text{ is defined for } x > 0$$

$$f'(x) = 0 \implies \frac{1}{2Jx} - \frac{1}{4} = 0 \implies \frac{1}{2Jx} = \frac{1}{4}$$

$$\implies Jx = 2 \implies x = 4$$

$$f''(x) = \frac{1}{2} \left(\frac{1}{2}\right) x^{3/2} = \frac{-1}{4\sqrt{3}}$$

$$f''(4) = \frac{-1}{4\sqrt{4^3}} = \frac{-1}{32} < 0$$
(oncome down

ftalees aloca maximum C X=4.

(5) (15 points) A particle moves along the x-axis so that its acceleration at time t is given by

$$a(t) = 12t^2 - \cos(t), \quad m/\sec^2.$$

At time t = 0, the velocity v and position s of the particle are known to be

$$v(0) = 1$$
 m/sec and $s(0) = 0$ m

Determine the position s(t) of the particle for all t > 0.

$$a (t) = v(t) \implies v(t) = 12 \frac{t^3}{3} - s_{in}t + C$$

$$v(t) = 4t^3 - s_{in}t + C$$

$$v(o) = 1 = 4 \cdot 0 - s_{in}0 + C \implies C = 1$$

$$v(t) = s'(t) \implies s(t) = 4 \cdot \frac{t^2}{4} + c_{os}t + t + k$$

$$s(t) = t^2 + c_{os}t + t + k$$

 $S(o) = 0 = 0 + (or 0 + 0 + h) \implies h = - Cor(o) = -)$

$$S(t) = t' + cot + t - 1$$

(6) (15 points) A closed rectangular box with a square base is to be constructed out of metal. The material for the top and bottom (the square sides) costs \$2.00 per square inch, and the material for the remaining four sides costs \$1.00 per square inch. The box must have a volume of 16 cubic inches. Find the dimensions of the box that will minimize the cost of material.

Top + bottom
Area =
$$2x^2 \text{ in}^2$$

Area = $2x^2 \text{ in}^2$
Cost = $2x^2 \text{ in}^2$, 62 lin^2
= $4x^2$ \$
Take x,h in induce
Notice
V = x^2h
Volume
V = x^2h
V=16 in³ =>
C(x) = $4x^2$ + $4x(\frac{10}{2x}) = 4x^2 + \frac{64}{x}$
C(x) = $4x^2$ + $4x(\frac{10}{2x}) = 4x^2 + \frac{64}{x}$
C(x) = $4x^2$ + $4x(\frac{10}{2x}) = 4x^2 + \frac{64}{x}$
C(x) = $4x^2$ + $4x(\frac{10}{2x}) = 4x^2 + \frac{64}{x}$
C(x) = $4x^2$ + $4x(\frac{10}{2x}) = 4x^2 + \frac{64}{x}$
C(x) = $4x^2$ + $4x(\frac{10}{2x}) = 4x^2 + \frac{64}{x}$
C(x) = $6x + \frac{128}{x^2}$, C'(z) = $8x - \frac{64}{x^2}$ whole x = 0
C'(x) = $8x + \frac{128}{x^2}$, C''(z) = $8 + \frac{128}{z^3} > 0$ for C is
minimum when
 $x = 2$
The dimensions to minimize (of the are
 $2in \times 2in \times 4$ im

(7) (15 points) The graph of the function f has two horizontal asymptotes. Find the equations of the horizontal asymptotes.

$$f(x) = \frac{\sqrt{x^2 + 2x}}{4x - 1}$$

$$\lim_{X \to \infty} f(x) = \lim_{X \to \infty} \frac{\sqrt{x^2 + nx}}{y_{X-1}} \cdot \frac{1}{\frac{1}{x}} \qquad for x > 0$$

$$= \lim_{X \to \infty} \frac{\sqrt{1 + \frac{2}{X}}}{4 - \frac{1}{X}} = \frac{\sqrt{1}}{4} = \frac{1}{4}$$

$$=\lim_{X \to \infty} -\frac{\int 1 + \frac{2}{X}}{Y - \frac{1}{X}} = -\frac{\int 1}{Y} = -\frac{1}{Y}$$

The equations of the two horizontal asymptotes an
$$y=\frac{1}{2}$$
 and $y=\frac{1}{2}$.