Exam III Math 2253H sec. 5H

Fall 2014

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are seven problems. The point value for each problem is listed with the problem. There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam and may result in removal from this class. To receive full credit, you must clearly justify your answer and use proper notation.
(1) (15 points) A polynomial f has the given second derivative.

$$
f^{\prime \prime}(x)=2(x-1)^{2}(x+4)(x-5)
$$

Determine the intervals on which f is concave up and the intervals on which f is concave down.

$$
\begin{aligned}
& f^{\prime \prime} \text { is always well defined. } \\
& f^{\prime \prime}(x)=0 \Rightarrow 0=2(x-1)^{2}(x+4)(x-5) \\
& \Rightarrow x=1, x=-4 \text { or } x=5
\end{aligned}
$$

Sigh of $f^{\prime \prime}$

$$
\begin{array}{lll}
f^{\prime \prime}(-5) & (+)(-)(-) & f^{\prime \prime}(2) \\
f^{\prime \prime}(0)(+)(+)(-) \\
(t)(-) & f^{\prime \prime}(6) & (+)(+)(+)
\end{array}
$$

f is concave up on \qquad $(-\infty,-4) \cup(5, \infty)$
f is concave down on \qquad $(-4,1) \cup(1,5)$
(2) (15 points) Suppose f is a rational function with domain $\{x \mid x \neq 4\}$ and whose first derivative is

$$
f^{\prime}(x)=\frac{x(x+2)^{2}}{x-4}
$$

(a) Find all critical numbers of f. (Remember to consider the domain.)

$$
\begin{aligned}
& f^{\prime}(x)=0 \Rightarrow x(x+2)^{2}=0 \Rightarrow x=0 \text { or } x=-2 \\
& f^{\prime}(x) \cup N D \Rightarrow x=4=0 \Rightarrow \text { (not in the domain) } \\
& f \text { has } t w o \text { critical numbers } 0 \text { oud }-2 \text {. }
\end{aligned}
$$

(b) Determine the intervals on which f is increasing and the intervals on which f is decreasing.

$$
\begin{array}{lll}
f^{\prime}(-3) \frac{(-)(t)}{-} & f^{\prime}(1) & \frac{(+k(+)}{-} \\
f^{\prime}(-1) \frac{(-1)(t)}{-} & f^{\prime}(5) & \frac{(+1)(+)}{t}
\end{array}
$$

f is increasing on $(-\infty,-2) \cup(-2,0) \cup(4, \infty)$.
f is decreasing on \qquad $(0,4)$
(3) (10 points) For the given function and the specified interval, find the value of c that satisfies the conclusion of the Mean Value Theorem.

$$
\left.\begin{array}{l}
f(x)=\cos x+\sin x \text { on }\left[0, \frac{\pi}{2}\right] \\
f^{\prime}(x)=-\sin x+\cos x \\
\left.f\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{2}\right)=0+1=1\right\} \Rightarrow \frac{f\left(\frac{\pi}{2}\right)-f(0)}{\frac{\pi}{2}-0}=0 \\
f(0)=\cos (0)+\sin (0)=1+0=1
\end{array}\right\} \begin{aligned}
& \frac{f\left(\frac{\pi}{2}\right)-f(0)}{\frac{\pi}{2}-0} \Rightarrow-\sin c+\cos c=0 \\
& f^{\prime}(c)=\Rightarrow \sin c=\cos c
\end{aligned}
$$

There is one such value on $\left[0, \frac{\pi}{2}\right]$ namely

$$
c=\frac{\pi}{4} .
$$

(4) (15 points) Let $f(x)=\sqrt{x}-\frac{x}{4}$ for $x>0$. Find the critical number of f and classify it as a local maximum or a local minimum.

$$
\begin{array}{r}
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}-\frac{1}{4} \quad f^{\prime}(x) \text { is defined for } x>0 \\
f^{\prime}(x)=0 \Rightarrow \frac{1}{2 \sqrt{x}}-\frac{1}{4}=0 \Rightarrow \frac{1}{2 \sqrt{x}}=\frac{1}{4} \\
\Rightarrow \sqrt{x}=2 \Rightarrow x=4
\end{array}
$$

$$
f^{\prime \prime}(x)=\frac{1}{2}\left(-\frac{1}{2}\right) x^{-3 / 2}=\frac{-1}{4 \sqrt{x^{3}}}
$$

$$
f^{\prime \prime}(4)=\frac{-1}{4 \sqrt{4^{3}}}=\frac{-1}{32}<0 \quad \text { concave down }
$$

f takes alocg maximum $O \quad x=4$.
(5) (15 points) A particle moves along the x-axis so that its acceleration at time t is given by

$$
a(t)=12 t^{2}-\cos (t), \quad \mathrm{m} / \mathrm{sec}^{2}
$$

At time $t=0$, the velocity v and position s of the particle are known to be

$$
v(0)=1 \mathrm{~m} / \mathrm{sec} \quad \text { and } \quad s(0)=0 \mathrm{~m}
$$

Determine the position $s(t)$ of the particle for all $t>0$.

$$
\begin{aligned}
& a(t)=v^{\prime}(t) \Rightarrow v(t)=12 \frac{t^{3}}{3}-\sin t+c \\
& v(t)=4 t^{3}-\sin t+c \\
& v(0)=1=4 \cdot 0-\sin 0+C \Rightarrow c=1 \\
& v(t)=s^{\prime}(t) \Rightarrow s(t)=4 \cdot \frac{t^{4}}{4}+\cos t+t+t^{4}+\cos +t t+k \\
& s(0)=0=0+\cos 0+0+h
\end{aligned}
$$

(6) (15 points) A closed rectangular box with a square base is to be constructed out of metal. The material for the top and bottom (the square sides) costs $\$ 2.00$ per square inch, and the material for the remaining four sides costs $\$ 1.00$ per square inch. The box must have a volume of 16 cubic inches. Find the dimensions of the box that will minimize the cost of material.

Tale x, h in inches

Volume

$$
\begin{array}{r}
V=x^{2} h \\
V=16 \operatorname{in}^{3} \Rightarrow \\
h=\frac{16}{x^{2}}
\end{array}
$$

Top \rightarrow bottom

$$
\text { Area }=2 x^{2} \mathrm{in}^{2}
$$

h

$$
\begin{aligned}
\operatorname{Cost} & =2 x^{2} \text { in }^{2} \cdot \$ 2 \operatorname{lin}^{2} \\
& =4 x^{2} \quad \$
\end{aligned}
$$

Lateral Surface

$$
\begin{aligned}
\text { Area } & =4 \times h \operatorname{in}^{2} \\
\text { Cost } & =4 \times h{i i^{2} \cdot \$ 1 i^{2}}=4 \times h \text { } \$
\end{aligned}
$$

Total cost

$$
c=4 x^{2}+4 x h
$$

$$
c(x)=4 x^{2}+4 x\left(\frac{16}{x^{2}}\right)=4 x^{2}+\frac{64}{x}
$$

Crit $\#$: $C^{\prime}(x)=8 x-\frac{64}{x^{2}}$ wove $x>0$

$$
\begin{aligned}
& C^{\prime}(x)=0 \Rightarrow 8 x=\frac{64}{x^{2}} \Rightarrow x^{3}=\frac{64}{8}=8 \\
& \Rightarrow x=2 \\
& C^{\prime \prime}(x)=8+\frac{128}{x^{3}}, \quad C^{\prime \prime}(2)=8+\frac{128}{2^{3}}>0 \quad \text { so cis is } \\
& h=\frac{16}{x^{2}}=\frac{16}{4}=4
\end{aligned}
$$

The dimensions to minimize cost are

$$
\operatorname{2in} \times 2 \text { in } \times 4 \text { in }
$$

(7) (15 points) The graph of the function f has two horizontal asymptotes. Find the equations of the horizontal asymptotes.

$$
f(x)=\frac{\sqrt{x^{2}+2 x}}{4 x-1}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+n x}}{4 x-1} \cdot \frac{\frac{1}{\sqrt{x^{2}}}}{\frac{1}{x}} \quad \text { for } x>0 \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+2 / x}}{4-\frac{1}{x}}=\frac{\sqrt{1}}{4}=\frac{1}{4} \\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+2 x}}{4 x-1} \quad \text { for } x<0 \\
& =\lim _{x \rightarrow-\infty}-\frac{\sqrt{1+2 / x}}{4-\frac{1}{x}}=\frac{-\sqrt{1}}{4}=\frac{-1}{4}
\end{aligned}
$$

The equations of the two horizontal aspire totes ane

$$
y=\frac{1}{4} \quad \text { and } \quad y=\frac{-1}{4}
$$

