Exam IV Math 2253H sec. 5 H

Fall 2014

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

| Problem |
| :---: | Points,\(~\left(\begin{array}{c|}\hline 1

\hline 2

\hline 3

\hline 4

\hline 5

\hline 6

\hline 7\end{array}\right.\)

INSTRUCTIONS: There are seven problems. The point value of each problem is listed with the problem. There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam and may result in removal from this class. To receive full credit, you must clearly justify your answer and use proper notation.
(1) (10 points) Evaluate the definite integral by interpreting it in terms of areas.

$$
\int_{0}^{3} f(x) d x \quad \text { where } \quad f(x)= \begin{cases}\sqrt{1-x^{2}}, & 0<x \leq 1 \\ 1-x, & x>1\end{cases}
$$

$$
y=\sqrt{1-x^{2}} \quad \Rightarrow \quad y^{2}=1-x^{2} \quad \Rightarrow \quad x^{2}+y^{2}=1
$$

$$
A_{1}=\frac{1}{4} \pi\left(1^{2}\right)=\frac{\pi}{4}
$$

$$
A_{2}=\frac{1}{2}(2)(2)=2
$$

$$
\begin{aligned}
\int_{0}^{3} f(x) d x & =A_{1}-A_{2} \\
& =\frac{\pi}{4}-2
\end{aligned}
$$

(2) (20 points) Evaluate the indefinite integral using any method.

$$
\begin{aligned}
\int(3 x+2)^{2} d x & =\int\left(9 x^{2}+12 x+4\right) d x \\
& =3 x^{3}+6 x^{2}+4 x+C
\end{aligned}
$$

(3) (20 points) Evaluate the definite integral using any method.

$$
\begin{aligned}
\int_{1}^{8} \frac{2}{\sqrt[3]{x}} d x & =2 \int_{1}^{8} x^{-1 / 3} d x \\
& =\left.2 \frac{x^{2 / 3}}{2 / 3}\right|_{1} ^{8}
\end{aligned} \begin{aligned}
& =\left.3 x^{2 / 3}\right|_{1} ^{8} \\
& =3(8)^{2 / 3}-3(1)^{2 / 3}=3(4)-3=9
\end{aligned}
$$

(4) (15 points) Find the area of the region bounded between the curves

$$
y=x^{2}-1 \quad \text { and } \quad y=1-x
$$

They intersect when

$$
\begin{aligned}
& x^{2}-1=1-x \\
& x^{2}+x-2=0 \\
& (x+2)(x-1)=0 \\
& x=-2 \text { or } x=1
\end{aligned}
$$

The line is the top curve on $-2 \leq x \leq 1$

$$
\begin{aligned}
& A=\int_{-2}^{1}\left(1-x-\left(x^{2}-1\right)\right) d x \\
&=\int_{-2}^{1}\left(2-x-x^{2}\right) d x \\
&=2 x-\frac{x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{-2} ^{1} \\
&=\left(2-\frac{1}{2}-\frac{1}{3}\right)-\left(-4-2+\frac{8}{3}\right) \\
&=2-\frac{1}{2}-\frac{1}{3}+6-\frac{8}{3} \\
&=8-\frac{1}{2}-\frac{9}{3} \\
&=5-\frac{1}{2} \\
&=\frac{9}{2}
\end{aligned}
$$

(5) (10 points) Evaluate the limit by writing it as an integral ${ }^{1}$, and evaluating the resulting integral in the usual way using the Fundamental Theorem. (Hint: Take $a=0$.)

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2 i}{n}\right)^{2} \frac{2}{n} & \mid f \\
f\left(x_{i}\right)=\left(\frac{2 i}{n}\right)^{2} & x_{i}=0, \quad \frac{b-a}{n}=\frac{2}{n} \Rightarrow b=2 \\
\Delta x=\frac{2}{n} & =i\left(\frac{2}{n}\right)=\frac{2 i}{n}
\end{array}
$$

since $f\left(x_{i}\right)=\left(\frac{2 i}{n}\right)^{2}=x_{i}^{2}$

$$
\text { we con take } f(x)=x^{2}
$$

$$
\int_{0}^{2} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{2}=\frac{8}{3}-0=\frac{8}{3}
$$

Hence

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2 i}{n}\right)^{2} \frac{2}{n}=\frac{8}{3}
$$

${ }^{1}$ Recall that if f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x, \quad \text { where } \quad \Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x
$$

(6) (15 points) Evaluate the indefinite integral using any method.

$$
\begin{aligned}
& \int x \sqrt[3]{x-1} d x \\
& =\int(u+1) u^{1 / 3} d u=\int\left(u^{4 / 3}+u^{1 / 3}\right) d u \\
& =\frac{u^{7 / 3}}{7 / 3}+\frac{u^{4 / 3}}{4 / 3}+C \\
& =\frac{3}{7} u^{7 / 3}+\frac{3}{4} u^{4 / 3}+C=1 x=1 \\
& = \\
& =\frac{3}{7} \sqrt[3]{(x-1)^{7}}+\frac{3}{4} \sqrt[3]{(x-1)^{4}}+C
\end{aligned}
$$

(7) (10 points) Find $g^{\prime}(x)$ where

$$
\begin{aligned}
& g(x)=\int_{2 x}^{x^{2}+1} \sec (\sqrt{t}) d t \\
& \delta^{\prime}(x)=\sec \left(\sqrt{x^{2}+1}\right)(2 x)-\sec (\sqrt{2 x}) \cdot 2 \\
&=2 x \sec \left(\sqrt{x^{2}+1}\right)-2 \sec (\sqrt{2 x})
\end{aligned}
$$

