Final Exam Math 2253 sec. 4

Summer 2011

Name: (1 point) Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

INSTRUCTIONS: There are 10 problems worth 11 points each. You can eliminate any one problem, or I will count your best 9 out of 10 . There are no notes, or books allowed and no calculator is allowed. To receive full credit, you must clearly justify your answer.
(1) The region bounded by the curves $x=y^{2}$ and $x=y$ is rotated about the y-axis. Find the volume of the resulting solid.

Intersections:

$$
\begin{aligned}
& x=y^{2}=y \\
& y^{2}-y=0 \\
& y(y-1)=0 \\
& y=0 \text { or } y=1
\end{aligned}
$$

Tube radius: $\quad R=x=y$ to the line inner radius: $r=x=y^{2}$ to the parabola
for som y in $(0,1)$ one washer has volume

$$
V=\left(\pi R^{2}-\pi r^{2}\right) \Delta y=\pi\left(y^{2}-y^{4}\right) \Delta y
$$

The toted volume is

$$
\begin{aligned}
V= & \int_{0}^{1} \pi\left(y^{2}-y^{4}\right) d y \\
& =\pi\left[\frac{y^{3}}{3}-\left.\frac{y^{5}}{5}\right|_{0} ^{1}=\pi\left[\frac{1}{3}-\frac{1}{5}-0\right]=\frac{2 \pi}{15}\right.
\end{aligned}
$$

(2) Evaluate the limit

$$
\begin{aligned}
& \lim _{x \rightarrow 5} \frac{x-5}{\sqrt{x^{2}-9}-4}=\lim _{x \rightarrow 5} \frac{x-5}{\sqrt{x^{2}-9}-4}\left(\frac{\sqrt{x^{2}-9}+4}{\sqrt{x^{2}-9}+4}\right) \\
&=\lim _{x \rightarrow 5} \frac{(x-5)\left(\sqrt{x^{2}-9}+4\right)}{x^{2}-9-16} \\
&=\lim _{x \rightarrow 5} \frac{(x-5)\left(\sqrt{x^{2}-9}+4\right)}{x^{2}-25} \\
&=\lim _{x \rightarrow 5} \frac{(x-5)\left(\sqrt{x^{2}-9}+4\right)}{(x-5)(x+5)} \\
& \lim _{x \rightarrow 5}=\frac{\sqrt{x^{2}-9}+4}{x+5}=\frac{\sqrt{16}+4}{5+5}=\frac{4}{5}
\end{aligned}
$$

(3) Find the derivative of the function. Simplification is NOT necessary.

$$
g(t)=\frac{t^{5 / 2}-3 t}{4 t^{3}+\tan t} \quad \delta^{\prime}(t)=\frac{\left(\frac{5}{2} t^{3 / 2}-3\right)\left(4 t^{3}+\tan t\right)-\left(t^{5 / 2}-3 t\right)\left(12 t^{2}+\sec ^{2} t\right)}{\left(4 t^{3}+\tan t\right)^{2}}
$$

(4) Find the area of the region bounded by the curves $y=x^{2}+2 x$ and $y=2 x+1$.

Intersections:

$$
\begin{aligned}
x^{2}+2 x & =2 x+1 \\
x^{2} & =1 \quad x=1 \text { or } x=-1
\end{aligned}
$$

$$
\left.\begin{array}{rl}
A=\int_{-1}^{1}\left(2 x+1-\left(x^{2}+2 x\right)\right) d x & =\int_{-1}^{1}\left(1-x^{2}\right) d x
\end{array}\right)=x-\left.\frac{x^{3}}{3}\right|_{-1} ^{1}, ~=\frac{4}{3}
$$

(5) Evaluate the limit.

$$
\lim _{x \rightarrow \infty} \frac{4 x-2 x^{2}}{x^{2}+7 x+1}=\lim _{x \rightarrow \infty} \frac{4 x-2 x^{2}}{x^{2}+7 x+1} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}
$$

$$
=\lim _{x \rightarrow \infty} \frac{\frac{4}{x}-2}{1+\frac{7}{x}+\frac{1}{x^{2}}}=\frac{0-2}{1+0}=-2
$$

(6) Find the equation of the line tangent to the graph of $x^{2} y+y^{2} x=2$ at the point $(1,1)$.

$$
\text { Find } \quad \frac{d y}{d x}: \quad 2 x y+x^{2} \frac{d y}{d x}+2 y x \frac{d y}{d x}+y^{2}=0
$$

$$
\left(x^{2}+2 x y\right) \frac{d y}{d x}=-\left(2 x y+y^{2}\right)
$$

Slope $\left.m=\frac{d y}{d x}\right)_{\substack{x=1 \\ y=1}}=-\frac{3}{3}=-1 \quad \frac{d y}{d x}=\frac{-\left(2 x y+y^{2}\right)}{x^{2}+2 x y}$

$$
y-1=\frac{-1(x-1)}{y=-x+2}
$$

(7) Evaluate the definite integral.

$$
\begin{aligned}
& \int_{0}^{1} x \sqrt{x^{2}+1} d x \quad \text { Let } u=x^{2}+1, \quad d u=2 x d x \Rightarrow \frac{1}{2} d u=x d x \\
& \text { If } x=0, u=1 \\
& =\int_{1}^{2} \frac{1}{2} u^{1 / 2} d u \\
& =\left.\frac{1}{2} \frac{u^{3 / 2}}{3 / 2}\right|_{1} ^{2}=\left.\frac{1}{3} u^{3 / 2}\right|_{1} ^{2} \\
& =\frac{1}{3}(2)^{3 / 2}-\frac{1}{3}(1)^{3 / 2}=\frac{2 \sqrt{2}}{3}-\frac{1}{3}
\end{aligned}
$$

(8) Solve the initial value problem.

$$
\begin{aligned}
& \frac{d y}{d x}=4 x+\sec x \tan x, \quad y(0)=-2 \\
& y=\int(4 x+\sec x \tan x) d x \\
&=4 \frac{x^{2}}{2}+\sec x+C \\
& y(x)=2 x^{2}+\sec x+C \\
& y(0)=2 \cdot 0+\sec 0+C=-2 \\
& y=2 x^{2}+\sec x-3
\end{aligned}
$$

(9) The volume of a cube is increasing at a rate of $1200 \mathrm{~cm}^{3} / \mathrm{min}$ at the instant that its edges are 20 cm long? At what rate are the lengths of the edges changing at that instant?
 Let x be the edge length. $V=x^{3}$ Given $\frac{d V}{d t}=1200 \frac{\mathrm{~cm}^{3}}{\mathrm{~min}}$ when $x=20 \mathrm{~cm}$. Find $\frac{d y}{d t}$ when $x=20 \mathrm{~cm}$.

$$
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t} \quad \Rightarrow \quad 1200 \frac{\mathrm{~cm}^{3}}{\sin ^{2}}=3(20 \mathrm{~cm})^{2} \frac{d x}{d t} \quad \text { when } \quad x=20 \mathrm{~cm}
$$

$$
\frac{d x}{d t}=\frac{1200 \frac{\mathrm{~cm}^{3}}{\mathrm{~min}}}{3.400 \mathrm{~cm}^{2}}=1 \frac{\mathrm{~cm}}{\sin }
$$

This an increasing at the rate of $1 \frac{\mathrm{~cm}}{\mathrm{~min}}$ at that moment.
(10) Evaluate the indefinite integral.

$$
\begin{array}{r}
\text { (a) } \int \cot ^{4} x \csc ^{2} x d x \quad \text { Let } u \\
=-\int u^{4} d u \\
=-\frac{u^{5}}{5}+C \\
=-\frac{\cot ^{5} x}{5}+C
\end{array}
$$

Lat $w=\cot x$

$$
d u=-\csc ^{2} x d x
$$

$$
-d u=\csc ^{2} x \partial x
$$

$$
\begin{aligned}
& \text { (b) } \int \frac{5 r}{\left(4+r^{2}\right)^{2}} d r \quad u=4+r^{2}, \quad \begin{array}{l}
d u \\
\frac{1}{2} d u
\end{array} \quad=r d r \\
&=\int \frac{5}{u^{2}} \cdot \frac{1}{2} d u \\
&=\frac{5}{2} \int u^{-2} d u=\frac{5}{2} \frac{\omega^{-1}}{-1}+C \\
&=\frac{-5}{2 u}+C=\frac{-5}{2\left(4+r^{2}\right)}+C
\end{aligned}
$$

