Final Exam Math 2254 sec. 2

Fall 2014

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

INSTRUCTIONS: There are 11 problems worth 10 points each. You may eliminate any one problem, or I will drop the problem with your lowest score. There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam and may result in a formal reported allegation of academic misconduct. To receive full credit, you must clearly justify your answer and use proper notation.
(1) Evaluate the derivative of each function.
(a) $\quad f(x)=x e^{x^{3}}$

$$
f^{\prime}(x)=e^{x^{3}}+3 x^{3} e^{x^{3}}
$$

(b) $g(t)=\log _{4}(t-\cos (t))$

$$
g^{\prime}(t)=\frac{1}{\ln ^{4}} \frac{1+\sin t}{t-\cos t}
$$

(c) $\quad f(x)=\sin ^{-1}\left(e^{x}\right)$

$$
f^{\prime}(x)=\frac{e^{x}}{\sqrt{1-e^{2 x}}}
$$

(2) Evaluate each indefinite integral.
(a) $\int \frac{8}{x^{2}+16} d x=\frac{8}{4} \tan ^{-1}\left(\frac{x}{4}\right)+C$

$$
=2 \tan ^{-1}\left(\frac{x}{4}\right)+C
$$

(b) $\int \frac{2 x}{x^{2}+16} d x=\int \frac{d u}{u}$

$$
\begin{aligned}
& u=x^{2}+1 b \\
& d u=2 x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\ln |n| t C \\
& =\ln \left|x^{2}+16\right|+C
\end{aligned}
$$

(3) Evaluate the integral using any applicable method.

$$
\int x \ln (x) d x \quad \begin{array}{ll}
u=\ln x & d u=\frac{d x}{x} \\
v=\frac{x^{2}}{2} & d v=x d x
\end{array}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x \\
& =\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+C
\end{aligned}
$$

(4) Evaluate the integral using any applicable method.

$$
\begin{aligned}
& \int \frac{4 x^{2}}{\sqrt{1-x^{2}}} d x \\
= & 4 \int \frac{\sin ^{2} \theta \cos \theta d \theta}{\cos \theta} \\
= & 4 \int \sin ^{2} \theta d \theta \\
= & 2 \int(1-\cos 2 \theta) d \theta \\
= & 2 \theta-\sin 2 \theta+C \\
= & 2 \theta-2 \sin \theta \cos \theta+C \\
= & 2 \sin ^{-1} x-2 x \sqrt{1-x^{2}}+C
\end{aligned}
$$

(5) Evaluate the integral using any applicable method.

$$
\begin{aligned}
& \int \frac{x-2}{x^{2}(x-1)} d x \quad \frac{x-2}{x^{2}(x-1)}=\frac{A}{x^{2}}+\frac{B}{x}+\frac{C}{x-1} \\
& \begin{aligned}
x-2= & A(x-1)+B x(x-1)+C x^{2} \\
x & =0 \\
& -2=-A \Rightarrow A=2
\end{aligned} \\
& x=1 \quad-1=c \\
& x=2 \quad 0=A+2 B+4 C \\
& 0=2+2 B-4 \Rightarrow 2 \beta-2=0 \\
& B=1 \\
& \int \frac{x-2}{x^{2}(x-1)} d x=\int\left(\frac{2}{x^{2}}+\frac{1}{x}-\frac{1}{x-1}\right) d x \\
& =\frac{-2}{x}+\ln |x|-\ln |x-1|+C
\end{aligned}
$$

(6) (a) Determine whether the integral is proper or improper. If improper, briefly state why. $\int_{0}^{2} \frac{d x}{(x-1)^{3}}$ it's improper the integrand is undefined $C 1$
(b) Evaluate the integral if possible or show that it is divergent.

$$
\int_{0}^{2} \frac{d x}{(x-1)^{3}}=\int_{0}^{1} \frac{d x}{(x-1)^{3}}+\int_{1}^{2} \frac{d x}{(x-1)^{3}}
$$

if defined

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{(x-1)^{2}}=\lim _{t \rightarrow 1^{-}} \int_{0}^{t} \frac{d x}{(x-1)^{3}} \\
&=\left.\lim _{t \rightarrow 1^{-}} \frac{-1}{2(x-1)^{2}}\right|_{0} ^{t} \\
&=\lim _{t \rightarrow 1^{-}}\left(\frac{-1}{2(t-1)^{2}}-\frac{-1}{2}\right)=-\infty \\
& \int_{0}^{2} \frac{d x}{(x-1)^{3}}
\end{aligned}
$$

(7) Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Use any applicable method.
(a) $\sum_{n=1}^{\infty} \frac{\tan ^{-1}(n)}{n \sqrt{n}}$
all nonnegative
terns

$$
\begin{aligned}
& 0 \leq \tan ^{-1}(n) \leq \pi / 2 \quad \forall n \geqslant 1 \\
& 0 \leqslant \frac{\tan ^{-1}(n)}{n^{3 h}} \leq \frac{\pi / 2}{n^{3 / 2}}
\end{aligned}
$$

As $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ is a convergent p-semies,
this seiner converges absolutely by
direct comparison.
(b) $\sum_{n=0}^{\infty}\left(-\frac{5}{2}\right)^{n}$

$$
\begin{gathered}
\text { Geometric } w \left\lvert\, \quad r=\frac{-5}{2}\right. \\
|r|=\frac{5}{2}>1
\end{gathered}
$$

le is divergent.
(8) Find a Taylor series for the function $f(x)=e^{3 x}$ centered at $a=1$ using any applicable method.

$$
\begin{aligned}
& e^{3 x}=e^{3(x-1+1)}=e^{3} e^{3(x-1)} \\
& =\sum_{n=0}^{\infty} \frac{[3(x-1)]^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{e^{3}}{3} \frac{3^{n}(x-1)^{n}}{n!}
\end{aligned}
$$

(9) Find the equation of the line tangent to the parametric curve at the indicated point.
(a) $\quad x=t^{2}-3, \quad y=e^{2 t}, \quad$ at $\quad\left(-2, e^{2}\right)$

$$
\begin{aligned}
& -2=t^{2}-3 \Rightarrow t^{2}=1 \quad t=1 \text { on } \\
& e^{2 t}=e^{2} \Rightarrow t=-1
\end{aligned}
$$

$$
\begin{array}{ll}
x^{\prime}(t)=2 t & x^{\prime}(1)=2 \\
y^{\prime}(t)=2 e^{2 t} & y^{\prime}(1)=2 e^{2}
\end{array}
$$

$$
t=1
$$

$$
m=\frac{2 e^{2}}{2}=e^{2}
$$

$$
\begin{aligned}
y-e^{2} & =e^{2}(x+2) \\
y & =e^{2} x+3 e^{2}
\end{aligned}
$$

(b) $\quad x=\theta \cos \theta, \quad y=\theta \sin \theta, \quad$ at $\quad \theta=2 \pi$

$$
\begin{array}{ll}
x^{\prime}=\cos \theta-\theta \sin \theta & y^{\prime}=\sin \theta+\theta \cos \theta \\
x^{\prime}(2 \pi)=1 & y^{\prime}(2 \pi)=2 \pi \\
x(2 \pi)=2 \pi & y(2 \pi)=0 \\
y=2 \pi(x-2 \pi) \\
y=2 \pi x-4 \pi^{2}
\end{array}
$$

(10) (a) Convert the Cartesian point $(x, y)=(-1,1)$ to polar coordinates (r, θ).

$$
\begin{aligned}
& r=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2} \quad \tan \theta=\frac{1}{-1}=-1 \\
& \left(\sqrt{2}, \frac{3 \pi}{4}\right)
\end{aligned}
$$

(b) Find the distance between the points in the plane with polar coordinates $\left(\sqrt{2}, \frac{\pi}{4}\right)$, and $\left(3, \frac{3 \pi}{2}\right)$.
(Hint: The standard distance formula only applies when points are known in Cartesian coordinates.)

$$
\begin{array}{lll}
x=\sqrt{2} \cos \frac{\pi}{4}=1, & y=\sqrt{2} \sin \frac{\pi}{4}=1 & (1,1) \\
x=3 \cos \frac{3 \pi}{2}=0 & y=3 \cos \frac{3 \pi}{2}=-3 & (0,-3)
\end{array}
$$

$$
d=\sqrt{(1-0)^{2}+(1+3)^{2}}=\sqrt{1+16}=\sqrt{17}
$$

(11) Find the area bounded by the polar curve ${ }^{1} r=2(1+\cos \theta)$ for $0 \leq \theta \leq \frac{\pi}{2}$.

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{\pi / 2} r^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 2} 4\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =2 \int_{0}^{\pi / 2}\left(1+2 \cos \theta+\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) d \theta \\
& =2\left[\frac{3}{2} \theta+2 \sin \theta+\left.\frac{1}{4} \sin 2 \theta\right|_{0} ^{\pi / 2}\right. \\
& =2\left[\frac{3 \pi}{4}+2+0\right]=\frac{3 \pi}{2}+4
\end{aligned}
$$

Polar Graph Paper

Some Potentially Useful Results

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n}, \quad|x|<1 \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad \text { for all } \mathrm{x} \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad \text { for all } \mathrm{x} \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad \text { for all } \mathrm{x} \\
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}, \quad-1<x \leq 1 \\
\tan ^{-1} x= & \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad-1<x \leq 1 \\
(1+x)^{k}= & 1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}, \quad|x|<1 \\
& \text { where } \quad\binom{k}{n}=\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!} .
\end{aligned}
$$

