## Final Exam Math 2335 sec. 1

Fall 2009

Name: ( 4pts)
Solutions

Your signature (required) confirms that you agree to practice academic honesty.

## Signature:

$\qquad$

| Problem | Points |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |

INSTRUCTIONS: There are 7 problems worth 16 points each; you can eliminate any one problem, or I will count your best 6 out of 7 $(6 \times 16+4=100)$. You may use your text book (Atkinson \& Han), one 8.5 " by 11 " page of written notes and a calculator. To receive full credit, you must clearly justify your answers.
(1) Find the condition number for the matrix

$$
\begin{aligned}
& \qquad A=\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right] \quad A^{-1}=\frac{1}{16-1}\left[\begin{array}{cc}
4 & -1 \\
-1 & 4
\end{array}\right]=\left[\begin{array}{cc}
\frac{4}{15} & \frac{-1}{15} \\
-\frac{1}{15} & \frac{4}{13}
\end{array}\right] \\
& \operatorname{Cond}(A)=\|A\|\left\|A^{-1}\right\| \\
& \|A\|=\max \{5,5\}=5 \quad\left\|A^{-1}\right\|=\max \left\{\frac{5}{13}, \frac{5}{15}\right\}=\frac{1}{3} \\
& \operatorname{Cond}(A)=5 \cdot \frac{1}{3}=\frac{5}{3}
\end{aligned}
$$

(2) Let $\alpha$ be the unique root of the function $f(x)=2-x-\ln x$. Find an interval $[a, b]$ contraining $\alpha$. Estimate the minimum number of iterations needed to find $\alpha$ using the bisection method within an accuracy of $10^{-10}$.

The domain of $f$ is $(0, \infty)$ due to the $90 g$.

$$
f(1)=2-1-\ln 1=1>0 \quad f(2)=2-2-\ln 2=-\ln 2<0
$$

So a rout exists on $[1,2]$. Bisection requires

$$
n \geq \frac{\ln \left(\frac{b-e}{\varepsilon}\right)}{\ln 2}=\frac{\ln \left(\frac{2-1}{10^{-10}}\right)}{\ln 2}=33.22
$$

34 iterations will give the required accuracy for $[a, b]=[1,2]$.
(3) Find the unique polynomial of degree $\leq 2$ that passes through the points $(0,3),(1,1)$, and $(2,2)$.

$$
\begin{aligned}
& x_{0}=0 \quad x_{1}=1 \\
& y_{0}=3 \quad y_{1}=1 \quad y_{2}=2 \\
& L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{1}{2}(x-1)(x-2)=\frac{1}{2}\left(x^{2}-3 x+2\right) \\
& L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=-x(x-2)=-\left(x^{2}-2 x\right) \\
& L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{1}{2} x(x-1)=\frac{1}{2}\left(x^{2}-x\right) \\
& P_{2}(x)= y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x) \\
&=\frac{3}{2}\left(x^{2}-3 x+2\right)-\left(x^{2}-2 x\right)+\frac{2}{2}\left(x^{2}-x\right) \\
&=\frac{3}{2} x^{2}-\frac{9}{2} x+3-x^{2}+2 x+x^{2}-x
\end{aligned}
$$

Divided Differences could be used instead.
(4) Approximate the integral (present your answers showing 10 digits to the right of the decimal)

$$
\int_{-1}^{1} \frac{1}{1+x^{4}} d x
$$

(a) using $T_{2}(f)$, the trapazoid rule with two subintervals,
(b) using $T_{4}(f)$, the trapazoid rule with four subintervals, and
(c) using $R_{4}(f)$ the Richardson extrapolation method for the trapazoid rule.
a) $T_{2}$ : $h=\frac{1-(-1)}{2}=1 \quad x_{0}=-1 \quad x_{1}=0 \quad x_{2}=1$

$$
\begin{aligned}
T_{2}(f) & =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \\
& =\frac{1}{2}\left[\frac{1}{2}+2.1+\frac{1}{2}\right]=\frac{3}{2}=1.5000000000
\end{aligned}
$$

b) $T_{4}: h=\frac{1-(-1)}{4}=\frac{1}{2} \quad x_{0}=-1, x_{1}=\frac{-1}{2}, x_{2}=0, x_{3}=\frac{1}{2}, x_{4}=1$

$$
\begin{aligned}
T_{4}(f) & =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \\
& =\frac{1}{4}\left[\frac{1}{2}+2 \cdot \frac{16}{17}+2 \cdot 1+2 \cdot \frac{16}{17}+\frac{1}{2}\right] \\
& =1.6911764706
\end{aligned}
$$

c) $R_{4}=\frac{1}{3}\left[4 T_{4}-T_{2}\right]$

$$
\begin{aligned}
& =\frac{1}{3}[5.2647058824] \\
& =1.7549019608
\end{aligned}
$$

(5) Find the fourth order Taylor polynomial with the remainder term for

$$
f(x)=\sqrt{1-x} \quad \text { centered at } a=0 .
$$

$$
\begin{array}{ll}
f(x)=\sqrt{1-x} & f(0)=1 \\
f^{\prime}(x)=\frac{-1}{2}(1-x)^{-1 / 2} & f^{\prime}(0)=\frac{-1}{2} \\
f^{\prime \prime}(x)=\frac{-1}{4}(1-x)^{-3 / 2} & f^{\prime \prime}(0)=\frac{-1}{4} \\
f^{\prime \prime \prime}(x)=\frac{-3}{8}(1-x)^{-5 / 2} & f^{\prime \prime \prime}(0)=\frac{-3}{8} \\
f^{(4)}(x)=\frac{-15}{16}(1-x)^{-7 / 2} & f^{(4)}(0)=\frac{-15}{16} \\
f^{(5)}(x)=\frac{-105}{32}(1-x)^{-9) / 2} & f^{(5)}(0)=\frac{-105}{32}(1-c) \\
P_{4}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}}{41} x^{4}
\end{array}
$$

$R_{n}(x)=\frac{x^{5}}{5!} f^{(5)}(c)$ for some $c$ between 0 and $x$

$$
\begin{array}{r}
P_{4}(x)=1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{2}-\frac{5}{128} x^{4} \\
R_{n}(x)=-\frac{7 x^{5}}{256}(1-c)^{-91_{2}}
\end{array}
$$

(6) Consider using a fourth order polynomial $P_{4}(x)$ to approximate the function

$$
f(x)=\sin (\pi x)
$$

on the interval $-1 \leq x \leq 1$.
(a) Find the $x$-values $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ that will minimize the error.
(b) Use the fact that $\left|f^{(5)}(x)\right| \leq 307$ for $-1 \leq x \leq 1$ to bound the error $\left|f(x)-P_{4}(x)\right|$.
a) The Che by sher nods are

$$
\begin{gathered}
x_{j}=\cos \left(\frac{(2 j+1) \pi}{2.5}\right) \quad j=0,1, \ldots, 4 \\
x_{0}=\cos \left(\frac{\pi}{10}\right)=0.951057 \\
x_{1}=\cos \left(\frac{3 \pi}{10}\right) \doteq 0.587785 \\
x_{2}=\cos \left(\frac{5 \pi}{10}\right)=0 \\
x_{3}=\cos \left(\frac{7 \pi}{10}\right)=-0.587785 \\
x_{4}=\cos \left(\frac{9 \pi}{10}\right)=-0.951057
\end{gathered}
$$

b) Error $\left|f(x)-P_{4}(x)\right| \leqslant \frac{L}{2^{4}}$ where $L=\max \left|\frac{f^{(5)}(x)}{5!}\right|$

$$
\begin{aligned}
& \text { Hoe e, } L=\frac{307}{120} \\
& \text { S. }\left|f(x)-P_{4}(x)\right| \leq \frac{307}{120} \cdot \frac{1}{16}=0.159896
\end{aligned}
$$

(7) Find an $L U$ decomposition of the given matrix.

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] \\
& {\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& \frac{\text { Scratch }}{121} \\
& R_{2}-\frac{1}{2} R_{1} \rightarrow R_{2} \quad m_{21}=\frac{1}{2} \\
& \frac{-1-120}{03 / 21} \\
& R_{3}-O R_{1} \rightarrow R_{3} \quad m_{31}=0 \\
& {\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 3 / 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 / 2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& 012 \\
& \frac{0 \quad-1}{0} \frac{-2 / 3}{0} 004 / 3 \\
& R_{3}-\frac{2}{3} R_{2} \rightarrow R_{3} \quad m_{32}=\frac{2}{3} \\
& {\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 3 / 2 & 1 \\
0 & 0 & 4 / 3
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 / 2 & 0 & 0 \\
0 & 2 / 3 & 0
\end{array}\right]} \\
& L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
0 & 2 / 3 & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 3 / 2 & 1 \\
0 & 0 & 4 / 3
\end{array}\right]
\end{aligned}
$$

Verification:

$$
L U=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 4 / 2 & 1 \\
0 & 1 & \frac{6}{3}
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]=A
$$

