Final Exam Math 2254 sec. 9

Spring 2012

Name: (1 point) wl Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

INSTRUCTIONS: There are 10 problems worth 11 points each. You may eliminate any one problem, or I will count your best 9 out of 10 . You may use a TI-83/84 calculator or a scientific calculator without graphing capabilities. A smart device may not substitute for a calculator. There are no notes, or books allowed. Illicit use of a smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam. To receive full credit, you must clearly justify your answer.
(1) Find the derivative of the given function.
(a) $f(x)=e^{2 x} \ln \left(x^{3}+2 x\right)$

$$
f^{\prime}(x)=2 e^{2 x} \ln \left(x^{3}+2 x\right)+e^{2 x}\left(\frac{3 x^{2}+2}{x^{3}+2 x}\right)
$$

(b) $g(t)=\tan ^{-1} t^{2}$

$$
g^{\prime}(t)=\frac{1}{1+\left(t^{2}\right)^{2}} \cdot 2 t=\frac{2 t}{1+t^{4}}
$$

(2) (a) Determine if the integral is proper or improper. If improper, state why. $\int_{0}^{1} x e^{\frac{\pi}{2}} d x$ It's proper.
(b) Evaluate the integral if possible.

$$
\begin{aligned}
& \int_{0}^{1} x e^{x / 2} d x
\end{aligned} \begin{aligned}
& \text { By parts } \\
& u=x \quad d v=e^{x / 2} d x \quad d u=d x \quad v=2 e^{x / 2} d x \\
& = \\
& \left.2 x e^{x / 2}\right|_{0} ^{1}-\int_{0}^{1} 2 e^{x / 2} d x \\
& = \\
& \left.2 x e^{x / 2}\right|_{0} ^{1}-\left.4 e^{x / 2}\right|_{0} ^{1} \\
& = \\
& 2 e^{\frac{1}{2}}-2 \cdot 0 e^{0}-4\left(e^{\frac{1}{2}}-e^{0}\right) \\
& = \\
& 2 e^{1 / 2}-4 e^{\frac{1}{2}}+4=4-2 e^{1 / 2}
\end{aligned}
$$

(3) (a) Determine if the integral is proper or improper. If improper, state why. © the upper limit 2 .
(b) Evaluate the integral if possible.

$$
\begin{aligned}
\int_{0}^{2} \frac{d x}{\sqrt{4-x^{2}}} & =\lim _{t \rightarrow 2^{-}} \int_{0}^{t} \frac{d x}{\sqrt{4-x^{2}}} \\
& =\left.\lim _{t \rightarrow 2^{-}} \sin ^{-1}\left(\frac{x}{2}\right)\right|_{0} ^{t} \\
& =\lim _{t \rightarrow 2^{-}}\left(\sin ^{-1}\left(\frac{t}{2}\right)-\sin ^{-1}(0)\right) \\
& =\sin ^{-1}\left(\frac{x}{a}\right)+C \\
& \sin ^{-1}\left(\frac{2}{2}\right)-0=\frac{\pi}{2}
\end{aligned}
$$

(4) Find the radius and interval of convergence of the power series.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(x-1)^{n}}{3^{n} n^{4}} \quad \text { Ratio test: } \quad a_{n}=\frac{(x-1)^{n}}{3^{n} n^{4}} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{3^{n+1}(n+1)^{4}} \cdot \frac{3^{n} n^{4}}{(x-1)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(x-1) n^{4}}{3(n+1)^{4}}\right|=\lim _{n \rightarrow \infty} \frac{|x-1|}{3}\left(\frac{n}{n+1}\right)^{4} \\
& =\frac{|x-1|}{3} \cdot 1=\frac{|x-1|}{3} \quad L=\frac{|x-1|}{3} \\
& |x-1|
\end{aligned}
$$

The serves converse absolutely if $\frac{|x-1|}{3}<1$
$\Rightarrow|x-1|<3$ The radius $R=3$.

$$
-3<x-1<3 \quad \Rightarrow \quad-2<x<4
$$

Check ends: $x=-2 \quad \sum_{n=1}^{\infty} \frac{(-2-1)^{n}}{3^{n} n^{4}}=\sum_{n=1}^{\infty} \frac{(-3)^{n}}{3^{n} n^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}$
Conmegent alt. Series

$$
x=4 \quad \sum_{n=1}^{\infty} \frac{(4-1)^{n}}{3^{n} n^{4}}=\sum_{n=1}^{\infty} \frac{3^{n}}{3^{n} n^{4}}=\sum_{n=1}^{\infty} \frac{1}{n^{4}} \quad \begin{aligned}
& p \text {-series } \\
& p=4>1
\end{aligned}
$$

convergent p-series
The interval is $-2 \leqslant x \leq 4$.

$$
\text { a.k.a. }[-2,4]
$$

(5) Find the area bounded by the polar curve $r=4 \sin (2 \theta)$ within the sector $0 \leq \theta \leq \frac{\pi}{4}$.

$\frac{1}{2}$ of one petal of a 4 -petal rose

Area $\quad A=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta$

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{\pi / 4}(4 \sin (2 \theta))^{2} d \theta \\
& =\frac{16}{2} \int_{0}^{\pi / 4} \sin ^{2}(2 \theta) d \theta \\
& =8 \int_{0}^{\pi / 4}\left(\frac{1}{2}-\frac{1}{2} \cos (4 \theta)\right) d \theta \\
& =4 \int_{0}^{\pi / 4}(1-\cos (4 \theta)) d \theta \\
& =\left.4\left(\theta-\frac{1}{4} \sin (4 \theta)\right)\right|_{0} ^{\pi / 4} \\
& =4\left(\frac{\pi}{4}-\frac{1}{4} \sin (\pi)-\left(0-\frac{1}{4} \sin (0)\right)\right) \\
& =4\left(\frac{\pi}{4}-0\right)=\pi
\end{aligned}
$$

(6) Find the Taylor polynomial of degree 2 centered at $a=0$ of the function

$$
\begin{aligned}
& f(x)=\sqrt{1+x} \quad f(0)=1 \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{1+x}} \quad f^{\prime}(0)=\frac{1}{2} \\
& f^{\prime \prime}(x)=\frac{-1}{4}(1+x) \quad f^{\prime \prime}(0)=\frac{-1}{4} \\
& T_{2}(x)=\frac{f(0)}{0!}+\frac{f^{\prime}(0)}{1!}(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2} \\
& T_{2}(x)=1+\frac{1}{2} x-\frac{1}{8} x^{2}
\end{aligned}
$$

(7) Find the equation of the line tangent to the parametric curve at the given value of the parameter.

$$
\begin{gathered}
x=t \cos t, \quad y=t \sin t ; \quad t=\pi \\
\frac{d x}{d t}=\cos t-t \sin t \quad \frac{d y}{d t}=\sin t+t \cos t \\
\Rightarrow \frac{d y}{d x}=\frac{d y) d t}{d x) d t}=\frac{\sin t+t \cos t}{\cos t-t \sin t}
\end{gathered}
$$

when $t=\pi$

$$
\begin{aligned}
& x=\pi \cos (\pi)=-\pi \quad y=\pi \sin (\pi)=0 \\
& \text { and slope } m=\left.\frac{d y}{d x}\right|_{t=\pi}=\frac{\sin (\pi)+\pi \cos (\pi)}{\cos (\pi)-\pi \sin (\pi)}=\frac{-\pi}{-1}=\pi
\end{aligned}
$$

The line is

$$
\begin{aligned}
y-0 & =\pi(x-(-\pi)) \\
y & =\pi x+\pi^{2}
\end{aligned}
$$

(8) Evaluate the improper integral, or determine that it is divergent.

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\tan ^{-1} x}{1+x^{2}} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{\tan ^{-1} x}{1+x^{2}} d x \\
& =\left.\lim _{t \rightarrow \infty} \frac{1}{2}\left(\tan ^{-1} x\right)^{2}\right|_{0} ^{t} \\
& =\lim _{t \rightarrow \infty} \frac{1}{2}\left(\tan ^{-1} t\right)^{2}-\frac{1}{2}\left(\tan ^{-1} 0\right)^{2} \\
& =\frac{1}{2}\left(\frac{\pi}{2}\right)^{2}=\frac{\pi^{2}}{8}
\end{aligned}
$$

$$
\text { * } \begin{array}{rlr}
& \int \frac{\tan ^{-1} x}{1+x^{2}} d x & \left.\begin{array}{l}
u=\tan ^{-1} x \\
d u
\end{array}\right)=\frac{1}{1+x^{2}} d x \\
& =\int u d u \\
& =\frac{u^{2}}{2}+C=\frac{1}{2}\left(\tan ^{-1} x\right)^{2}+C
\end{array}
$$

(9) Evaluate the indefinite integral.

$$
\begin{aligned}
& \int \frac{3 x-4}{x^{2}-3 x+2} d x \\
& \text { Paticl Fracton: } \\
& \frac{3 x-4}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{3}{x-2} \\
& 3 x-4=A(x-2)+B(x-1) \\
& x=1 \quad-1=-A \quad \Rightarrow A=1 \\
& x=2 \quad 2=B \Rightarrow B=2
\end{aligned}
$$

$$
\int \frac{3 x-4}{x^{2}-3 x+2} d x=\int\left(\frac{1}{x-1}+\frac{2}{x-2}\right) d x
$$

$$
=\ln |x-1|+2 \ln |x-2|+C
$$

(10) Evaluate the given limit. If you use any theorems (Squeeze theorem, l'Hospital's rule, etc.), identify them.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{3}-x^{2}}=\frac{{ }^{\prime \prime}}{0} \quad \text { use } \quad l^{\prime} \mid-1 \text { rel } \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{3 x^{2}-2 x}=\frac{0}{0} \quad \operatorname{cog} \operatorname{in} \\
& =\lim _{x \rightarrow 0} \frac{\cos x}{6 x-2}=\frac{1}{-2}=\frac{-1}{2}
\end{aligned}
$$

Potentially Useful Formulas.

$$
\begin{gathered}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}, \quad \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)} \quad-1<x \leq 1 \\
\frac{a}{1-r}=\sum_{n=0}^{\infty} a r^{n}, \quad|r|<1
\end{gathered}
$$

