Exam 1 Math 1190 sec. 51

Summer 2017

Name:

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: You have 60 minutes to complete this exam.
There are 6 problems. The point values are listed with the problems.

There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) (15 points) Use the graph of $y=f(x)$ shown to evaluate or answer the following questions.

a) (2 pts) Evaluate or write DNE $\quad \lim _{x \rightarrow 0^{+}} f(x)=1$
b) (2 pts) Evaluate or write DNE $\quad \lim _{x \rightarrow 0^{-}} f(x)=0$
c) (2 pts) Evaluate or write DNE $\lim _{x \rightarrow 1} f(x)=$ DUE
d) (2 pts) Evaluate or write DNE $\quad f(3)=1$
e) (2 pts) Evaluate or write DNE $\quad \lim _{x \rightarrow 3} f(x)=2$
f) (3 pts) List all x values on the interval $2<x<5$ at which f is discontinuous.

$$
0,1 \text {, and } 3
$$

g) (2 pts) Is f continuous from the right, continuous from the left or neither at $x=0$? (Justify)

$$
\begin{array}{ll}
f(0)=0 \quad & \lim _{x \rightarrow 0^{-}} f(x)=0=f(0) \leftarrow \text { (t's continuous from } \\
& \lim _{x \rightarrow 0^{+}} f(x)=1 \neq f(0) \leftarrow \text { not from the right. }
\end{array}
$$

(2) (20 points) Evaluate each limit using limits laws and any necessary algebra. (Use of l'Hospital's rule will not be considered for credit.)
(a) $\lim _{x \rightarrow 3} \frac{x^{2}+1}{x+2}=\frac{3^{2}+1}{3+2}=\frac{10}{5}=2$
(b) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2} \cdot\left(\frac{\sqrt{x}+2}{\sqrt{x}+2}\right)=\lim _{x \rightarrow 4} \frac{(x-4)(\sqrt{x}+2)}{x-4}$ " $\frac{0}{6}$ "

$$
=\lim _{x \rightarrow 4}(\sqrt{x}+2)=\sqrt{4}+2=4
$$

(c) $\lim _{x \rightarrow-2} \frac{x^{2}+5 x+6}{x^{2}-4}=\lim _{x \rightarrow-2} \frac{(x+2)(x+3)}{(x+2)(x-2)}$
$\because{ }^{\circ}{ }^{\circ}$

$$
=\lim _{x \rightarrow-2} \frac{x+3}{x-2}=\frac{-2+3}{-2-2}=\frac{-1}{4}
$$

(d) $\lim _{x \rightarrow 0} e^{\cos x}=e^{\cos 0}=e^{1}=e$
(3) (20 points) Evaluate each limit. If a limit is an infinity, ∞ or $-\infty$, give the appropriate infinity as your answer. (Use of l'Hospital's rule will not be considered for credit.)
(a) $\lim _{x \rightarrow \infty} \frac{8}{\sqrt[4]{x}}=0$
(b) $\lim _{x \rightarrow-\infty} \frac{2 x-7}{3 x+1}=\lim _{x \rightarrow-\infty}\left(\frac{2 x-7}{3 x+1}\right) \cdot \frac{\frac{1}{x}}{\frac{1}{x}}$

$$
=\lim _{x \rightarrow-\infty} \frac{2-\frac{7}{x}}{3+\frac{1}{x}}=\frac{2-0}{3+0}=\frac{2}{3}
$$

(c) $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$
(d) $\lim _{x \rightarrow-1} \frac{x}{|x+1|}$

$$
\begin{aligned}
\lim _{x \rightarrow-1} x=-1, ~ a n d ~ & |x+1|>0 \\
& \text { for all } x \neq-1
\end{aligned}
$$

$$
=-\infty \quad \text { But } \lim _{x \rightarrow-1}|x+1|=0
$$

(4) Let $f(t)=\left\{\begin{array}{ll}\frac{\sin (5 t)+2 t}{t}, & t \neq 0 \\ A, & t=0\end{array} \quad\right.$ where A is some constant.
(a) (10 points) Evaluate

$$
\begin{aligned}
& \lim _{t \rightarrow 0} f(t)=\lim _{t \rightarrow 0} \frac{\sin (5 t)+2 t}{t} \\
& =\lim _{t \rightarrow 0}\left(\frac{\sin (5 t)}{t}+\frac{2 t}{t}\right) \\
& =\lim _{t \rightarrow 0}\left(\frac{5}{5} \frac{\sin (5 t)}{t}+2\right) \\
& =\lim _{t \rightarrow 0} 5\left(\frac{\sin (5 t)}{t}\right)+\lim _{t \rightarrow 0} 2=5 \cdot 1+2=7
\end{aligned}
$$

(b) (5 points) Determine what value A should take so that f will be continuous at $t=0$.

$$
\text { If } A=7 \text {, then } \lim _{t \rightarrow 0} f(t)=f(0)
$$

so A should be 7.
(5) (15 points) Suppose f and g are functions having the following known limits

$$
\begin{array}{llll}
\lim _{x \rightarrow-2} f(x)=-1, & \lim _{x \rightarrow 0} f(x)=3, & \lim _{x \rightarrow 1} f(x)=2, & \lim _{x \rightarrow 4} f(x)=-5 \\
\lim _{x \rightarrow-2} g(x)=2, & \lim _{x \rightarrow 0} g(x)=-2, & \lim _{x \rightarrow 1} g(x)=4, & \lim _{x \rightarrow 4} g(x)=2
\end{array}
$$

Evaluate
a) $\lim _{x \rightarrow-2} 3 f(x)=3(-1)=-3$
b) $\lim _{x \rightarrow 1}(f(x)-2 g(x))=2-2 \cdot 4=-6$
c) $\lim _{x \rightarrow 0} f(x) g(x)=3(-2)=-6$
d) $\lim _{x \rightarrow 4} \frac{g(x)}{f(x)}=\frac{2}{-5}=-\frac{2}{5}$
e) If f is continous at 4 , evaluate $\lim _{x \rightarrow 1} f(g(x))=f\left(\lim _{x \rightarrow 1} g(x)\right)=f(y)=-5$
(6) Let $f(x)=x^{2}+3 x$.
(a) (10 points) Evaluate $f^{\prime}(2)$ by computing the limit (use proper notation!)

$$
\begin{aligned}
f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2} & =\lim _{x \rightarrow 2} \frac{x^{2}+3 x-\left(2^{2}+3 \cdot 2\right)}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+5)}{x-2} \\
= & \lim _{x \rightarrow 2}(x+5)=2+5=7 \\
& f^{\prime}(2)=7
\end{aligned}
$$

(b) (5 points) Use your answer from part (a) to find the equation of the line tangent to the graph of f at the point $(2, f(2))$. Express your final answer in slope intercept form $y=m x+b$.

$$
\begin{gathered}
f(2)=10 \text { so the point is }(2,10) . \\
\text { The slope man }=f^{\prime}(2)=7 . \\
y-10=7(x-2) \\
y-10=7 x-14 \\
y=7 x-14+10 \\
y=7 x-4
\end{gathered}
$$

