Exam I Math 3260 sec. 57

Fall 2017

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	

INSTRUCTIONS: There are 8 problems; the point values are listed with the problems. You may use a calculator with matrix capabilities. No wifi enabled device can be used as a calculator. There are no notes, or books allowed. Illicit use of a smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, you must clearly justify your answer.
(1) (15 points) Solve the linear system by using row reduction on the associated augmented matrix. Show each step in the row reduction process-i.e. do this one by hand and show all of your work. Give your answer in parametric or vector parametric form, your choice.

$$
\begin{aligned}
& \begin{aligned}
x_{1}-x_{3} & =2 \\
2 x_{1}+x_{2}+2 x_{3} & =-6 \\
3 x_{1}+2 x_{2}+2 x_{3} & =-5
\end{aligned} \quad\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
2 & 1 & 2 & -6 \\
3 & 2 & 2 & -5
\end{array}\right] \begin{array}{l}
-2 R_{1}+R_{2} \rightarrow R_{2} \\
\\
-3 R_{1}+R_{3} \rightarrow R_{3}
\end{array} \\
& {\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0
\end{array}\right] \quad \begin{array}{cccccccc}
-2 & 0 & 2 & -4 & -3 & 0 & 3 & -6 \\
2 & 1 & 2 & -6 & 3 & 2 & 2 & -5
\end{array}} \\
& {\left[\begin{array}{cccc}
0 & 1 & 4 & -10 \\
0 & 2 & 5 & -11
\end{array}\right] \quad-2 R_{2}+R_{3} \rightarrow R_{3}} \\
& {\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 1 & 4 & -10 \\
0 & 0 & -3 & 9
\end{array}\right] \quad-\frac{1}{3} R_{3} \rightarrow R_{3}} \\
& {\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 1 & 4 & -10 \\
0 & 0 & 1 & -3
\end{array}\right] \begin{array}{l}
-4 R_{3}+R_{2} \rightarrow R_{2} \\
R_{3}+R_{1} \rightarrow R_{1}
\end{array}} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -3
\end{array}\right] \Rightarrow \begin{array}{l}
x_{1}=-1 \\
x_{2}=2 \\
x_{3}=-3
\end{array}} \\
& \text { in vector ponametric } \quad \vec{x}=\left[\begin{array}{c}
-1 \\
2 \\
-3
\end{array}\right]
\end{aligned}
$$

(2) (15 points) The matrices A and B shown below are row equivalent. Use this to find the solution set of the given system of equations.

$$
\begin{aligned}
& A=\left[\begin{array}{rrrrr}
3 & -6 & 1 & 6 & 14 \\
-1 & 2 & 0 & -1 & -4 \\
2 & -4 & 1 & 5 & 10
\end{array}\right] \quad B=\left[\begin{array}{rrrrr}
1 & -2 & 0 & 1 & 4 \\
0 & 0 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& 3 x_{1}-6 x_{2}+x_{3}+6 x_{4}=14 \\
& -x_{1}+2 x_{2}-x_{4}=-4 \\
& 2 x_{1}-4 x_{2}+x_{3}+5 x_{4}=10 \\
& \text { In vector paanatr.c } \\
& \text { From } B \\
& x_{1}=4+2 x_{2}-x_{4} \\
& x_{2} \text {-fran } \\
& x_{3}=2-3 x_{4} \\
& \vec{x}=\left[\begin{array}{l}
4 \\
0 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
-3 \\
1
\end{array}\right] \\
& \text { Set in } \mathbb{R}
\end{aligned}
$$

(3) (15 points) Find the standard matrix for the linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}$ defined by

$$
\begin{aligned}
& T\left(x_{1}, x_{2}, x_{3}\right)=\left(-x_{3}, 0, x_{2}, x_{1}\right) \\
& T(1,0,0)=(0,0,0,1) \\
& T(0,1,0)=(0,0,1,0) \\
& T(0,0,1)=(-1,0,0,0) \\
& \text { The standard matrix ir }\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(4) (5 points) Suppose the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has the two nontrivial solutions \mathbf{u} and v. Show that every vector in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ also solves the homogeneous equation.

$$
\begin{aligned}
& A \vec{u}=\overrightarrow{0} \text { and } A \vec{v}=\overrightarrow{0} \\
& \text { Let } \vec{x} \in \operatorname{span}\{\vec{u}, \vec{V}\} \text {. so } \vec{x}=c_{1} \vec{u}+c_{2} \vec{v} \text { for } \\
& \text { some number } c_{1} \text { on } c_{2} \text {. } \\
& A \vec{x}=A\left(c_{1} \vec{u}+c_{2} \vec{v}\right)=c_{1} A \vec{u}+c_{2} A \vec{v} \\
&=c_{1} \vec{O}+c_{2} \vec{O}=\overrightarrow{0} \\
& \vec{x} \text { in span }\{\vec{u}, \vec{v}\} \text { solver the } \\
& \text { Hence } \\
& \text { hon gengous equation. }
\end{aligned}
$$

(5) (5 points) Suppose that the vector \mathbf{u}_{1} solves the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}_{1}$ and that the vector \mathbf{u}_{2} solves the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}_{2}$. Show that the vector $\mathbf{u}_{1}+\mathbf{u}_{2}$ solves the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}_{1}+\mathbf{b}_{\mathbf{2}}$.

$$
\begin{aligned}
& \text { Directly from the proputies } \delta \text { matrix } \\
& \text { mwetiplicotion } \\
& A\left(\vec{u}_{1}+\vec{u}_{2}\right)=A \vec{u}_{1}+A \vec{u}_{2} \\
&
\end{aligned} \begin{aligned}
& =\vec{b}_{1}+\vec{b}_{2} \text { as expected }
\end{aligned}
$$

(6) (15 points) Consider the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{3}\right\}$.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
$$

(a) Is the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ linearly dependent or linearly independent? (Justify)

They are dependent, In particular

$$
\begin{aligned}
& \vec{v}_{2}=\stackrel{\rightharpoonup}{v_{1}} \\
& \overrightarrow{2}_{V_{1}}-\vec{v}_{2}=\overrightarrow{0}
\end{aligned}
$$

(b) Is the vector $\mathbf{b}=(1,0,0)$ in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$? (Justify)

$$
\begin{aligned}
& \text { No. If } \vec{b}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \text { then } \\
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
c_{1} 0+c_{2} 0 \\
\vdots
\end{array}\right] \text { whin requires } } \\
& 1=0
\end{aligned}
$$

(c) Is the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ linearly dependent or linearly independent? (Justify) It's dependent by pant (a). Note $2 \vec{v}_{1}-\vec{V}_{2}+\stackrel{\rightharpoonup}{O} v_{3}=\overrightarrow{0}$ Is a lin. dependence relation.
(7) (20 points) Use the given matrices to evaluate each expression. If an expresion does not exist, state why it does not exist.

$$
A=\left[\begin{array}{rrr}
1 & -1 & 4 \\
0 & 2 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 0 \\
2 & -3
\end{array}\right], \quad C=\left[\begin{array}{rr}
2 & 2 \\
1 & -3 \\
0 & 4
\end{array}\right]
$$

(a) $-2 B=\left[\begin{array}{ll}-2 & 0 \\ -4 & 6\end{array}\right]$
(b) Undefined. \#rous in B doesint $2 \times 3 \quad 2 \times 2$ nota \# Colunns in A
(c) $B A$

$$
\left[\begin{array}{cc}
1 & 0 \\
2 & -3
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 4 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{lcc}
1 & -1 & 4 \\
2 & -8 & 5
\end{array}\right]
$$

(d) $A \mathrm{x}$ where $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ Unddimd $A \vec{x}$ requine \vec{x} in \mathbb{R}^{3}
(e) $C^{T}+A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 2 & -3 & 4\end{array}\right]+\left[\begin{array}{ccc}1 & -1 & 4 \\ 0 & 2 & 1\end{array}\right]=\left[\begin{array}{ccc}3 & 0 & 4 \\ 2 & -1 & 5\end{array}\right]$
(8) (10 points) The homogeneous equation $A \mathbf{x}=\mathbf{0}$ is always consistent because it always has the trivial solution. Let

$$
A=\left[\begin{array}{ll}
1 & b \\
c & d
\end{array}\right], \quad \text { for some real numbers } b, c, \text { and } d
$$

Determine whether the homogeneous equation $A \mathrm{x}=\mathbf{0}$ has one solution or infinitely many soluslions
(a) If $d=b c$.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & b & 0 \\
c & d & 0
\end{array}\right]-c R_{1}+R_{2} \rightarrow R_{2}} \\
& {\left[\begin{array}{lll}
1 & b & 0 \\
0 & d-c b & 0
\end{array}\right]}
\end{aligned}
$$

$$
\text { If } \begin{aligned}
d= & b c \\
& \text { the matrix is } \quad\left[\begin{array}{lll}
1 & b & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The system has infinitely many solutions.
(b) If $d=b c+1$.

$$
\begin{aligned}
& \text { If } d=b c+1 \text { the above is } \\
& \qquad\left[\begin{array}{lll}
1 & b & 0 \\
0 & 1 & 0
\end{array}\right] \Rightarrow \quad x_{1}=x_{2}=0
\end{aligned}
$$

Orts the trivial solntim would exist.

