(Part 2) Exam I Math 1190 sec. 51

Fall 2016

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are 7 problems. The point values are listed with the problems; there are 65 possible points. This constitutes 65% of the first exam for this course.

There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct.

To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) (10 points) Evaluate each limit using limit laws and any necessary algebra.
(a) $\lim _{x \rightarrow 2^{+}} \sqrt{x^{2}-4}=\sqrt{2^{2}-4}=\sqrt{4-4}=0$
(b) $\lim _{t \rightarrow 4} \frac{t-4}{\sqrt{t}-2}=\lim _{t \rightarrow 4} \frac{t-4}{\sqrt{t}-2} \cdot\left(\frac{\sqrt{t}+2}{\sqrt{t}+2}\right)$

$$
\begin{aligned}
=\lim _{t \rightarrow 4} \frac{(t-4)(\sqrt{t}+2)}{t-4} & =\lim _{t \rightarrow 4}(\sqrt{t}+2) \\
& =\sqrt{4}+2=4
\end{aligned}
$$

(2) (10 points) Use the known result $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ to evaluate the limit. Appropriate and correct steps must be shown to receive credit.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (3 x)}{4 x} & =\lim _{x \rightarrow 0} \frac{1}{4} \frac{\frac{\sin (3 x)}{\cos (3 x)}}{x} \\
& =\lim _{x \rightarrow 0} \frac{1}{4 \cos (3 x)} \frac{\sin (3 x)}{x} \cdot \frac{3}{3} \\
& =\lim _{x \rightarrow 0} \frac{3}{4 \cos (3 x)} \frac{\sin (3 x)}{3 x} \\
& =\frac{3}{4 \cdot 1} \cdot 1=\frac{3}{4}
\end{aligned}
$$

(3) (a) (10 points) Let $f(x)=3 x^{2}+1$. Find the slope of the line tangent to the graph of f at the point $(1, f(1))$ by setting up and evaluating the limit

$$
m_{t a n}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}
$$

$$
\begin{aligned}
& f(1)=3 \cdot 1^{2}+1=4 \\
& m_{\tan }=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{\left(3 x^{2}+1\right)-4}{x-1} \\
&=\lim _{x \rightarrow 1} \frac{3 x^{2}-3}{x-1} \\
&=\lim _{x \rightarrow 1} \frac{3(x-1)(x+1)}{x-1} \\
&=\lim _{x \rightarrow 1} 3(x+1)=3(1+1)=6 \\
& m_{\tan }=6
\end{aligned}
$$

(b) (3 points) Use the results from part (a) to find the equation of the line tangent to the graph of f at the point $(1, f(1))$. Present your final answer in the slope-intercept form $y=m x+b$.

$$
y-4=6(x-1) \Rightarrow y=6 x-6+4
$$

(4) (10 points) Evaluate each limit at infinity. If the limit is ∞ or $-\infty$ state this. If the limit doesn't exist, you may say DNE. Show work where appropriate to receive credit.
(a) $\lim _{x \rightarrow \infty} e^{2 x}=\infty$
(b) $\lim _{x \rightarrow \infty} \frac{x^{4}}{3 x^{4}+2 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{4}}{3 x^{4}+2 x^{2}+1} \cdot \frac{\frac{1}{x^{4}}}{\frac{1}{x^{4}}}$

$$
\lim _{x \rightarrow \infty} \frac{1}{3+\frac{2}{x^{2}}+\frac{1}{x^{4}}}=\frac{1}{3+0+0}=\frac{1}{3}
$$

(5) (10 points) Determine if the function is continuous at the indicated point. (Clearly state your conclusion with justification.)

$$
f(x)=\left\{\begin{array}{ll}
e^{(x-1)}+1, & x<1 \\
3 x-1, & x \geq 1
\end{array} \quad c=1\right.
$$

$$
\left.\begin{array}{l}
f(1)=3 \cdot 1-1=2 \quad f(1) \text { is defined } \\
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}-} e^{x-1}+1=e^{0}+1=2 \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(3 x-1)=3-1=2
\end{array}\right\} \begin{aligned}
& \lim _{x \rightarrow 1} f(x)=2
\end{aligned}
$$

$$
\text { Since } \lim _{x \rightarrow 1} f(x)=2=f(1)
$$

$$
f \text { is continuous } \& 1 \text {. }
$$

(6) (6 points) Make a coherent argument that the equation $\sin x=1-x$ has at least one solution on the interval $[0, \pi]$.

Let $f(x)=\sin x-1+x$. Then f is continuous on $(-\infty, \infty)$. Hence f is continuous on $[0, \pi]$.

$$
\begin{aligned}
& f(0)=\sin (0)-1+0=-1<0 \\
& f(\pi)=\sin (\pi)-1+\pi=\pi-1>0 \text { as } \pi>1
\end{aligned}
$$

$N=0$ is a number between $f(0)$ and $f(\pi)$.
By the IVT, there exists C in $(0, \pi)$ such that $f(c)=0$. c is a solution $\sin c e$

$$
f(c)=\sin c-1+c=0 \Rightarrow \sin c=1-c
$$

(7) (6 points) Suppose f is continuous on $(-\infty, \infty)$ and $0 \leq f(x) \leq 2$ for all x. Determine $\lim _{x \rightarrow 0} x^{2} f(x)$. (Hint: Since you don't know exactly what f is, see if you can use two other simpler functions to squeeze out an answer.)

$$
\begin{aligned}
& 0 \leqslant f(x) \leqslant 2 \quad \sin 6 \quad x^{2} \geqslant 0 \quad \text { for de } x \\
& x^{2} \cdot 0 \leqslant x^{2} f(x) \leqslant x^{2} \cdot 2 \Rightarrow 0 \leq x^{2} f(x) \leq 2 x^{2}
\end{aligned}
$$

This holds for abl x. In panticuler for x near zeno.

$$
\lim _{x \rightarrow 0} 0=0 \quad, \quad \lim _{x \rightarrow 0} 2 x^{2}=0
$$

By the sneeze the

$$
\lim _{x \rightarrow 0} x^{2} f(x)=0
$$

