(Part 2) Exam I Math 1190 sec. 62

Spring 2017

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: You have $50 \mathrm{~min}-$ utes to complete this exam.
There are 6 problems. The point values are listed with the problems; there are 65 possible points. This constitutes 65% of the first exam for this course.

There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) (15 points) Evaluate each limit using limit laws and any required algebra.
(a) $\lim _{x \rightarrow 1} \sqrt{3+x^{2}}=\sqrt{3+1^{2}}=\sqrt{4}=2$
(b) $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x^{2}+5 x+6}=\frac{0}{0}$

$$
=\lim _{x \rightarrow-2} \frac{(x-2)(x+2)}{(x+3)(x+2)}=\lim _{x \rightarrow-2} \frac{x-2}{x+3}=\frac{-2-2}{-2+3}=\frac{-4}{1}=-4
$$

(c) $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}=\frac{{ }^{"}}{0}$

$$
=\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+1}-1}{x}\right)\left(\frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}\right)
$$

$$
=\lim _{x \rightarrow 0} \frac{x+1-1}{x(\sqrt{x+1}+1)}=\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+1}+1)}
$$

$$
=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+1}+1}=\frac{1}{\sqrt{0+1}+1}=\frac{1}{2}
$$

(2) (10 points) Use the graph of $y=f(x)$ shown to evaluate or answer the following questions.

a Evaluate if possible $\lim _{x \rightarrow-3} f(x)=0$
b Evaluate if possible $f(1)=-2$
c Evaluate if possible $\lim _{x \rightarrow-1^{+}} f(x)=1$
d Evaluate if possible $\lim _{x \rightarrow-1^{-}} f(x)=0$
e Determine whether f is continuous from the right at -1 , continuous from the left at -1 or neither. (Justify your claim.)

$$
\begin{aligned}
& \text { Continuous from the right since } \\
& \qquad \lim _{x \rightarrow 1}+f(x)=1=f(-1)
\end{aligned}
$$

(3) (8 points) Use the identity $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ to evaluate the limit. (Show appropriate steps.)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (x)+\sin (3 x)}{x}= & \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}+\frac{\sin (3 x)}{x}\right) \\
= & \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}+\frac{\sin (3 x)}{x} \cdot \frac{3}{3}\right) \\
= & \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}+3 \frac{\sin (3 x)}{3 x}\right) \\
& =1+3 \cdot 1=4
\end{aligned}
$$

(4) (10 points) Evaluate each limit if it exists. (Show steps where appropriate.)
(a) $\lim _{x \rightarrow \infty}\left(3+\frac{3}{x}\right)=3+0=3$
(b) $\lim _{x \rightarrow-\infty} \frac{2 x^{4}+3 x^{2}+1}{3 x^{4}+x^{3}+x} \cdot \frac{\frac{1}{x^{4}}}{\frac{1}{x^{4}}}$

$$
=\lim _{x \rightarrow-\infty} \frac{2+\frac{3}{x^{2}}+\frac{1}{x^{4}}}{3+\frac{1}{x}+\frac{1}{x^{3}}}=\frac{2+0+0}{3+0+0}=\frac{2}{3}
$$

(5) (12 points) Suppose $f(x)=\left\{\begin{array}{ll}A x-2, & x \leq 1 \\ 4 x+2, & x>1\end{array}\right.$ for some real number A.
(a) Evaluate $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(A x-2)=A-2$
(b) Evaluate $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(4 x+2)=4 \cdot 1+2=6$
(c) Determine all possible values of A for which f is continuous at 1 .
we require $\lim _{x \rightarrow 1} f(x)=f(1) \Rightarrow A-z=6 \Rightarrow A=8$
(6) (10 points) Evaluate each limit. (These you should know. It is not necessary to try to show work).
a $\lim _{x \rightarrow \infty} e^{x}=\infty$
$\mathrm{b} \lim _{x \rightarrow-\infty} e^{x}=0$
c $\lim _{x \rightarrow \infty} \ln x=\infty$
$\mathrm{d} \lim _{x \rightarrow 0^{+}} \ln x=-\infty$
$\mathrm{e} \lim _{x \rightarrow 0} \cos x=\cos 0=1$

