Exam 2 Math 1190 sec. 51

Fall 2016

Name:

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are 7 problems. The point values are listed with the problems.

There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct.

To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) (15 points, 5 each) Find the derivative of each function. Do not leave compound fractions in your answers, otherwise it is not necessary to simplify.
(a) $y=x^{2} \cos (x)$

$$
y^{\prime}=2 x \cos x-x^{2} \sin x
$$

(b) $f(x)=\frac{\tan x}{x^{3}+x} \quad f^{\prime}(x)=\frac{\sec ^{2} x\left(x^{3}+x\right)-\tan x\left(3 x^{2}+1\right)}{\left(x^{3}+x\right)^{2}}$
(c) $y=\sqrt[3]{x^{4}}=x^{4 / 3}$

$$
y^{\prime}=\frac{4}{3} x^{\frac{1}{3}}=\frac{4}{3} \sqrt[3]{x}
$$

(2) (15 points) Find $\frac{d y}{d x}$ given the relation $x^{2} y=2 x-y^{3}$.

$$
\begin{aligned}
2 x y+x^{2} \frac{d y}{d x} & =2-3 y^{2} \frac{d y}{d x} \\
x^{2} \frac{d y}{d x}+3 y^{2} \frac{d y}{d x} & =2-2 x y \\
\left(x^{2}+3 y^{2}\right) \frac{d y}{d x} & =2-2 x y \\
\frac{d y}{d x} & =\frac{2-2 x y}{x^{2}+3 y^{2}}
\end{aligned}
$$

(3) (15 points) Find the equation of the line tangent to the graph of $f(x)=x^{2} e^{x}$ at the point $(1, e)$.

$$
\begin{gathered}
f^{\prime}(x)=2 x e^{x}+x^{2} e^{x}, \quad f^{\prime}(1)=2 \cdot 1 e^{\prime}+1^{2} e^{\prime}=3 e \\
y-e=3 e(x-1)=3 e x-3 e \\
y=3 e x-3 e+e \\
y=3 e x-2 e
\end{gathered}
$$

(4) (15 points, 5 each) Find the derivative of each function.
(a) $\quad f(x)=\sin ^{-1}\left(x^{2}\right)$

$$
f^{\prime}(x)=\frac{1}{\sqrt{1-x^{4}}} \cdot 2 x=\frac{2 x}{\sqrt{1-x^{4}}}
$$

(b) $\quad f(x)=x \tan ^{-1} x$

$$
\begin{aligned}
f^{\prime}(x) & =\tan ^{-1} x+\infty \frac{1}{1+x^{2}} \\
& =\tan ^{-1} x+\frac{x}{1+x^{2}}
\end{aligned}
$$

(c) $g(t)=3^{t}+\log _{3}(t)$

$$
g^{\prime}(t)=3^{t} \ln 3+\frac{1}{t \ln 3}
$$

(5) (10 points) Find the x-value of all points on the graph of the function at which the tangent line is horizontal.

$$
\begin{aligned}
& f(x)=(x-2)^{3}(x+5)^{-4} \quad f^{\prime}(x)=3(x-2)^{2}(x+5)^{-4}-4(x-2)^{3}(x+5)^{-5} \\
& 3(x-2)^{2}(x+5)^{-4}-4(x-2)^{3}(x+5)^{-5}=0 \\
& (x-2)^{2}(x+5)^{-5}[3(x+5)-4(x-2)]=0 \\
& (x-2)^{2}(x+5)^{-5}(-x+23)=0 \Rightarrow x=2 \text { or } x=23
\end{aligned}
$$

There are horizontal tangents C

$$
x=2 \text { and @ } x=23 \text {. }
$$

(6) (10 points) Use logarithmic differentiation to find $\frac{d y}{d x}$. Assume y is positive. (Your final result should be stated in terms of x, but need not be fully simplified.)

$$
\begin{aligned}
& y=(\cot x)^{x} \\
& \ln y=\ln (\cot x)^{x}=x \ln \cot x \\
& \frac{1}{y} \frac{d y}{d x}=\ln \cot x+x \frac{-\csc ^{2} x}{\cot x} \\
& \frac{d y}{d x}=y\left(\ln \cot x-\frac{x \csc ^{2} x}{\cot x}\right)
\end{aligned}
$$

$$
\frac{d y}{d x}=(\cot x)^{x}\left(\ln \cot x-\frac{x \csc ^{2} x}{\cot x}\right)
$$

(7) (20 points) Use the definition of the derivative (i.e. set up and evaluate a limit) ${ }^{1}$ to show that $\frac{d}{d x} x^{4}=4 x^{3}$.

$$
\begin{aligned}
\frac{d}{d x} x^{4} & =\lim _{h \rightarrow 0} \frac{\frac{(x+h)^{4}-x^{4}}{h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}-x^{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \\
& =4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3} \\
& =4 x^{3}+6 x^{2} \cdot 0+4 x \cdot 0^{2}+0^{3}
\end{aligned}
$$

${ }^{1}$ The following may be very useful:

$$
(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
$$

