Exam 2 Math 1190 sec. 51

Summer 2017

Name: \qquad Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	

INSTRUCTIONS: You have 60 minutes to complete this exam.
There are 8 problems. The point values are listed with the problems.

There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) (10 points) Evaluate each basic derivative. (No work needs to be shown. These you either know or don't know.)
a) $\frac{d}{d x} \cos x=-\sin x$
b) $\frac{d}{d x} e^{-x}=-e^{-x}$
c) $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$
d) $\frac{d}{d x} x^{5}=5 x^{4}$
e) $\frac{d}{d x} \tan x=\sec ^{2} x$
f) $\frac{d}{d x} 3=0$
g) $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$
h) $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$
i) $\frac{d}{d x} \frac{1}{x}=\frac{-1}{x^{2}}$
j) $\frac{d}{d x} 6^{x}=6^{x} \ln 6$
(2) (20 points) Evaluate each derivative using any applicable derivative rules. (It is not necessary to simplify.)
a) $\frac{d}{d x} x \ln x=\ln x+x \cdot \frac{1}{x}=\ln x+1$
b) $\frac{d}{d x} \frac{x^{2}+2 x}{x-3}=\frac{(2 x+2)(x-3)-\left(x^{2}+2 x\right)}{(x-3)^{2}}$
c) $\frac{d}{d x} \sin \left(e^{x}\right)=\operatorname{Cos}\left(e^{x}\right) e^{x}$
d) $\frac{d}{d x} \ln \left(3 x^{2}+2\right)=\frac{6 x}{3 x^{2}+2}$
e) $\begin{gathered}\frac{d}{d x} \frac{1}{\sqrt[3]{x^{2}}}=\frac{-2}{3} x^{-5 / 3} \\ \chi^{-2 / 3}\end{gathered}$
(3) (8 points) Find $f^{\prime}(x)$. It is not necessary to simplify. (Hint: Log properties are your friend!)

$$
\begin{gathered}
f(x)=\ln \left(\frac{x(x-2)^{3}}{\sin ^{2} x}\right)=\ln x+3 \ln (x-2)-2 \ln (\sin x) \\
f^{\prime}(x)=\frac{1}{x}+\frac{3}{x-2}-2 \frac{\cos x}{\sin x}
\end{gathered}
$$

(4) (12 points) Find the first, second, and third derivatives of $f(x)=\frac{x}{x+1}$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{x+1-x}{(x+1)^{2}}=\frac{1}{(x+1)^{2}} \quad \text { note } f(x)=(x+1)^{-2} \\
& f^{\prime \prime}(x)=-2(x+1)^{-3}=\frac{-2}{(x+1)^{3}} \\
& f^{\prime \prime \prime}(x)=\frac{6}{(x+1)^{4}}
\end{aligned}
$$

(5) (a) (7 points) Find $\frac{d y}{d x}$ given the relation $x^{3} y^{2}+3 y=-2$.

$$
\begin{array}{r}
3 x^{2} y^{2}+2 x^{3} y \frac{d y}{d x}+3 \frac{d y}{d x}=0 \\
\left(2 x^{3} y+3\right) \frac{d y}{d x}=-3 x^{2} y^{2} \\
\frac{d y}{d x}=\frac{-3 x^{2} y^{2}}{2 x^{3} y+3}
\end{array}
$$

(b) (3 points) Find the equation of the line tangent to the graph of the given relation at the point $(1,-1)$. Express your answer in the form $y=m x+b$.

$$
\text { when } x=1 \text { and } y=-1, m_{\text {ton }}=\frac{d y}{d x} \text { \& }(1,-1)
$$

$$
m_{\text {ton }}=\frac{-3(1)^{2}(-1)^{2}}{2(1)^{3}(-1)+3}=\frac{-3}{1}=-3
$$

$$
\begin{aligned}
y-(-1) & =-3(x-1) \\
y & =-3 x+3-1
\end{aligned}
$$

$$
y=-3 x+2
$$

(6) When studying a certain elevator, it was determined that riders experienced the most comfortable ride when the vertical motion is given by $s(t)=4 t+\frac{4}{5} t^{2}+\frac{1}{3} t^{3}$. The position (height) s is in meters and time t is in seconds.
(a) (5 points) Find the velocity $v(t)$ of the elevator (include units in your answer).

$$
v(t)=s^{\prime}(t)=4+\frac{8}{5} t+t^{2} \frac{m}{\sec }
$$

(b) (5 points) Find the acceleration of the elevator when $t=1$ second. Include units in your answer.

$$
\begin{aligned}
a(t) & =v^{\prime}(x)=\frac{8}{5}+2 t \frac{m}{\sec ^{2}} \\
& \Rightarrow a(1)=\frac{8}{5}+2 \frac{m}{\sec ^{2}}=\frac{18}{5} \frac{m}{s^{2} c^{2}}
\end{aligned}
$$

(c) (2 points) The rate of change of acceleration is called jerk. Find the jerk J of the elevator.

$$
J=a^{\prime}(t)=2 \quad \text { The jerk } J=2 \frac{m}{\sec ^{3}}
$$

(7) Suppose f and g are differentiable functions and we know that

$$
\left.\begin{array}{lllll}
f(-1)=3, & f(0)=4, & f(1)=2, & f^{\prime}(-1)=7, & f^{\prime}(0)=3, \\
g(-1)=2, & g(0)=-2, & g(2)=6, & g^{\prime}(-1)=-1, & g^{\prime}(0)=2,
\end{array} g^{\prime}(2)=-4\right)
$$

Find if possible
(a) (2 pts) If $y=f(x)+3 g(x)$, find $y^{\prime}(-1) \quad y^{\prime}(-1)=f^{\prime}(-1)+3 g^{\prime}(-1)=7+3(-1)=4$
$=$
(b) (2 pts) if $F(x)=f(x) g(x)$, find $F^{\prime}(0) \quad F^{\prime}(0)=f^{\prime}(0) g(0)+f(0) \delta^{\prime}(0)$

$$
=3 \cdot(-2)+4(2)=2
$$

(c) (3 pts) If $z(x)=g \circ f$, find $z^{\prime}(1)$

$$
z^{\prime}(1)=g^{\prime}(f(1)) \cdot f^{\prime}(1)=g^{\prime}(2) f^{\prime}(1)=-3 \cdot(-4)=12
$$

(d) (3 pts) The equation of the line tangent to the graph of g at the point $(2, g(2))$.

$$
\begin{aligned}
& g(2)=6 \quad m_{\text {ten }}=g^{\prime}(2)=-3 \\
& y-6=-3(x-2) \Rightarrow y=-3 x+12
\end{aligned}
$$

(8) Use the graph of $y=f(x)$ shown in the figure to evaluate or otherwise answer each question.

a) (3 pts) Evaluate (or write DNE) $f^{\prime}(-2)=$ DNE (corner)
b) (3 pts) Evaluate (or write DNE) $f^{\prime}(1)=0$ (h orizontd tangent)
c) (3 pts) Evaluate (or write DNE) $f^{\prime}(2)=$ DNE

d) (3 pts) Is $f^{\prime}(x)$ positive, negative, or zero on the interval $3<x<5$?
positive (slope upward)
e) (3 pts) Identify all x-values) at which f is continuous but f is not differentiable.

$$
x=-2 \text { and } x=3 \text { (corners) }
$$

f) (3 pts) Write the three quantities in order from least to greatest: $f^{\prime}\left(-\frac{3}{2}\right), f^{\prime}(0), f^{\prime}\left(\frac{3}{2}\right)$

$$
\begin{aligned}
& \frac{f^{\prime}\left(\frac{3}{2}\right)}{\text { smallest }} \\
& \frac{f^{\prime}\left(\frac{-3}{2}\right)}{\text { middle }} \\
& \frac{f^{\prime}(0)}{\text { largest }}
\end{aligned}
$$

