Exam 2 Math 1190 sec. 52

Fall 2016

Name:

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are 7 problems. The point values are listed with the problems.

There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct.

To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) (15 points, 5 each) Find the derivative of each function. Do not leave compound fractions in your answers, otherwise it is not necessary to simplify.
(a) $y=x^{3} \sin x$

$$
y^{\prime}=3 x^{2} \sin x+x^{3} \cos x
$$

(b) $f(x)=\frac{\cot x}{x^{2}-1} \quad f^{\prime}(x)=\frac{-\csc ^{2} x\left(x^{2}-1\right)-\cot x(2 x)}{\left(x^{2}-1\right)^{2}}$

$$
=-\frac{\left(x^{2}-1\right) \csc ^{2} x-2 x \cot x}{\left(x^{2}-1\right)^{2}}
$$

(c) $y=\sqrt[4]{x^{3}}=x^{3 / 4}$

$$
y^{\prime}=\frac{3}{4} x^{-1 / 4}=\frac{3}{4 \sqrt[4]{x}}
$$

(2) (15 points) Find $\frac{d y}{d x}$ given the relation $x y^{2}=3 x-y^{4}$.

$$
\begin{array}{r}
y^{2}+x(2 y) \frac{d y}{d x}=3-4 y^{3} \frac{d y}{d x} \\
2 x y \frac{d y}{d x}+4 y^{3} \frac{d y}{d x}=3-y^{2} \\
\left(2 x y+4 y^{3}\right) \frac{d y}{d x}=3-y^{2} \\
\frac{d y}{d x}=\frac{3-y^{2}}{2 x y+4 y^{3}}
\end{array}
$$

(3) (15 points) Find the equation of the line tangent to the graph of $f(x)=2 x e^{x}$ at the point $(1,2 e)$.

$$
\begin{gathered}
f^{\prime}(x)=2 e^{x}+2 x e^{x} \quad f^{\prime}(1)=2 e^{\prime}+2 \cdot 1 e^{\prime}=4 e \\
y-2 e=4 e(x-1)=4 e x-4 e \\
y=4 e x-4 e+2 e \\
y=4 e x-2 e
\end{gathered}
$$

(4) (15 points, 5 each) Find the derivative of each function.
(a) $\quad f(x)=\tan ^{-1}\left(x^{2}\right)$

$$
f^{\prime}(x)=\frac{1}{1+\left(x^{2}\right)^{2}}(2 x)=\frac{2 x}{1+x^{4}}
$$

(b) $\quad f(x)=x \sin ^{-1} x$

$$
\begin{aligned}
f^{\prime}(x) & =\sin ^{-1} x+x \frac{1}{\sqrt{1-x^{2}}} \\
& =\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

(c) $g(t)=4^{t}+\log _{4}(t)$

$$
g^{\prime}(t)=4^{t} \ln 4+\frac{1}{t \ln 4}
$$

(5) (10 points) Find the x-value of all points on the graph of the function at which the tangent line is horizontal.

$$
\begin{aligned}
& f(x)=(x+1)^{3}(x-2)^{-4} \quad f^{\prime}(x)=3(x+1)^{2}(x-2)^{-4}-4(x+1)^{3}(x-2)^{-5} \\
& 3(x+1)^{2}(x-2)^{-4}-4(x+1)^{3}(x-2)^{-5}=0 \\
& (x+1)^{2}(x-2)^{-5}[3(x-2)-4(x+1)]=0 \\
& (x+1)^{2}(x-2)^{-5}(-x-10)=0 \Rightarrow \sqrt{2}(x) \text { or } x=-10
\end{aligned}
$$

There are horizon tall tangents Q

$$
x=-1 \quad \text { and } \quad C \quad x=-10
$$

(6) (10 points) Use logarithmic differentiation to find $\frac{d y}{d x}$. Assume y is positive. (Your final result should be stated in terms of x, but need not be fully simplified.)

$$
\begin{aligned}
& y=(\cos x)^{x} \\
& \ln y=\ln (\cos x)^{x}=x \ln \cos x \\
& \frac{1}{y} \frac{d y}{d x}=\ln \cos x+x \frac{-\sin x}{\cos x} \\
& \frac{d y}{d x}=y(\ln \cos x-x \tan x) \\
& \frac{d y}{d x}=(\cos x)^{x}(\ln \cos x-x \tan x)
\end{aligned}
$$

(7) (20 points) Use the definition of the derivative (i.e. set up and evaluate a limit) ${ }^{1}$ to show that $\frac{d}{d x} x^{5}=5 x^{4}$.

$$
\begin{aligned}
\frac{d}{d x} x^{5} & =\lim _{h \rightarrow 0} \frac{(x+h)^{5}-x^{5}}{h} \\
= & \lim _{h \rightarrow 0} \frac{x^{5}+5 x^{4} h+10 x^{3} h^{2}+10 x^{2} h^{3}+5 x h^{4}+h^{3}-x^{5}}{h} \\
= & \lim _{h \rightarrow 0} \frac{5 x^{4} h+10 x^{3} h^{2}+10 x^{2} h^{3}+5 x h^{4}+h^{5}}{h} \\
= & \lim _{h \rightarrow 0} h\left(5 x^{4}+10 x^{3} h+10 x^{2} h^{2}+5 x h^{3}+h^{4}\right) \\
= & \lim _{h \rightarrow 0} \\
= & 5 x^{4}+10 x^{3} h+10 x^{2} h^{2}+5 x h^{3}+h^{4} \\
& =5 x^{4}+10 x^{3} \cdot 0+10 x^{2} \cdot 0^{2}+5 x \cdot 0^{3}+0^{4} \\
& =5 x^{4}
\end{aligned}
$$

${ }^{1}$ The following may be very useful:

$$
(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5} .
$$

