Exam II Math 3260 sec. 55

Spring 2018

Name: \qquad

Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are 7 problems; the point values are listed with the problems. You may use a calculator with matrix capabilities. No wifi enabled device can be used as a calculator. There are no notes, or books allowed. Illicit use of a smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, you must clearly justify your answer.
(1) (30 points, 5 each) Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, 2 x_{2}+x_{1}, 0\right)$
(a) Identify the domain and codomain of T.
domain \mathbb{R}^{2}
codorain \mathbb{R}^{3}
(b) Find the standard matrix A for the linear transformation T.
$\begin{aligned} & T(1,0)=(1,1,0) \\ & T(0,1)=(-1,2,0)\end{aligned} \quad A=\left[\begin{array}{cc}1 & -1 \\ 1 & 2 \\ 0 & 0\end{array}\right]$
(c) Is $(1,1)$ in the domain of T ? If so, find its image.

$$
\text { Yes, } \quad T(1,1)=(0,3,0)
$$

(d) Is $(1,1)$ in the range of T ? If so, find \mathbf{x} in the domain such that $T(\mathbf{x})=(1,1)$.

$$
\text { No, the range is in } \mathbb{R}^{3} \text { not } \mathbb{R}^{2} \text {. }
$$

(e) Is $(1,1,0)$ in the domain of T ? If so, find its image.

$$
\text { No, }(1,1,0) \text { is in } \mathbb{R}^{3} \text { but the dominion } \mathbb{R}^{2}
$$

(f) Is $(1,1,0)$ in the range of T ? If so, find \mathbf{x} in the domain such that $T(\mathbf{x})=(1,1,0)$.

$$
\begin{array}{r}
T(1,0)=(1,1,0) \text { so Yes, }(1,1,0) \text { is } \\
\text { in the range } \\
\text { ad }(1,0) \text { is } \\
\text { one such } \mathscr{x} .
\end{array}
$$

(2) (10 points) Find all values of x such that $\operatorname{det}(A)=0$ where $A=\left[\begin{array}{ccc}x+1 & -3 & 3 \\ 0 & x-3 & 5 \\ 0 & 1 & x+1\end{array}\right]$.

$$
\begin{aligned}
\operatorname{dt}(A)=(x+1)\left|\begin{array}{cc}
x-3 & 5 \\
1 & x+1
\end{array}\right| & =(x+1)((x-3)(x+1)-5) \\
& =(x+1)\left(x^{2}-2 x-8\right) \\
& =(x+1)(x-4)(x+2)
\end{aligned}
$$

$$
\operatorname{dt}(A)=0 \text { if } x=-1,4 \text {, or }-2
$$

(3) (a) (5 points) In your own words, give a definition of Span.

Span of a set of vectors is the set of all line or combinations of those vectors.
(b) (5 points) Suppose \mathbf{u} is a nonzero vector in \mathbb{R}^{n}. What if anything is the difference between the set $\{\mathbf{u}\}$ and $\operatorname{Span}\{\mathbf{u}\}$?
$\{\vec{u}\}$ is a set containing on vector.
$\operatorname{Span}\{\vec{u}\}$ contains infinitely many vectors
of the form $C \vec{H}$ where
c is any scaler.
(4) (25 points, 5 each) Use the given matrices to evaluate the desired expression. If the expression is undefined give a reason (more detailed than "because a calculator says so.").

$$
A=\left[\begin{array}{cc}
1 & 1 \\
7 & -2
\end{array}\right] \quad B=\left[\begin{array}{ccc}
-3 & 0 & 10 \\
3 & 3 & 1 \\
0 & 0 & 6
\end{array}\right] \quad C=\left[\begin{array}{ccc}
4 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] \quad D=\left[\begin{array}{cc}
0 & 4 \\
-2 & 6
\end{array}\right]
$$

(a) $B C$

$$
3 \times 3 \text { Undefined \# Columns } B \neq \text { Brows } C
$$

(b) $D+3 A^{T}$

$$
\left[\begin{array}{cc}
0 & 4 \\
-2 & 6
\end{array}\right]+3\left[\begin{array}{cc}
1 & 7 \\
1 & -2
\end{array}\right]=\left[\begin{array}{ll}
3 & 25 \\
1 & 0
\end{array}\right]
$$

(c) $\operatorname{det}(C)$ Undefined C is not a square matrix
(d) $C B=\left[\begin{array}{ccc}4 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]\left[\begin{array}{ccc}-3 & 0 & 10 \\ 3 & 3 & 1 \\ 0 & 0 & 6\end{array}\right]=\left[\begin{array}{ccc}-9 & 3 & 41 \\ -6 & -6 & 4\end{array}\right]$
(e) $\operatorname{det}(B)=6\left|\begin{array}{cc}-3 & 0 \\ 3 & 3\end{array}\right|=6(-9)=-54$
(5) (10 points) Let $A=\left[\begin{array}{ccc}2 & 4 & 0 \\ 0 & -1 & 1\end{array}\right]$. Find a spanning set for $\operatorname{Nul}(A)$.

$$
\begin{aligned}
& \operatorname{rret}(A)=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1
\end{array}\right] \\
& \begin{array}{l}
x_{1}=-2 x_{3} \\
x_{2}=x_{3}
\end{array} \\
& x_{3}-\delta x_{a} \\
& \text { If } \vec{x} \text { is in Nee } A \\
& \vec{x}=x_{3}\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right] \\
& \text { so }\left\{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\} \text { is a spanning out, } \\
& \text { ide. } \operatorname{Nae}(A)=\operatorname{spon}\left\{\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]\right\} \text {. }
\end{aligned}
$$

(6) (10 points) Suppose we wish to solve the given system using Crammer's rule. Determine the values of the parameter s for which the given system has exactly one solution. Then for those s, find the solution using Crammer's rule.

$$
\begin{aligned}
& \begin{array}{l}
s X+4 Y=2 \\
9 X+s Y=1
\end{array} \quad A=\left[\begin{array}{ll}
5 & 4 \\
9 & 5
\end{array}\right] \\
& \operatorname{det}\left(\left[\begin{array}{ll}
s & 4 \\
9 & s
\end{array}\right]\right)=s^{2}-36=(s-6)(s+6) \\
& d *(A) \neq 0 \text { if } s \pm \pm 6 \\
& \operatorname{dat}\left(A_{1}\right)=\left|\left[\begin{array}{ll}
2 & 4 \\
1 & 5
\end{array}\right]\right|=25-4 \\
& \operatorname{dt}\left(A_{2}\right)=\left|\left[\begin{array}{ll}
5 & 2 \\
9 & 1
\end{array}\right]\right|=5-18 \\
& \text { For } s \neq \pm 6 \\
& X=\frac{2 s-4}{s^{2}-36}, \quad Y=\frac{s-18}{s^{2}-36}
\end{aligned}
$$

(7) (5 points) Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{P}_{1}$ be the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=a+2 a t
$$

(a) Evaluate $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=1+2 t$
(b) Evaluate $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=1+2 t$
(c) Evaluate $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=0+o t=0$
(d) Is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ in the kernel of T ? \quad oo, $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right) \neq 0+\partial t$
(e) Is $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ in the kernel of T ? Les $\sin u \quad T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=0+0 t$

