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INSTRUCTIONS: There are 8 prob-
lems; the point values are listed with
the problems. You may use a calcu-
lator with matrix capabilities. No wifi
enabled device can be used as a cal-
culator. There are no notes, or books
allowed. Illicit use of a smart phone,
tablet, device that runs apps, or
hand written notes will result in a
grade of zero on this exam as well
as a formal allegation of academic
misconduct. To receive full credit,
you must clearly justify your answer.



(1) (10 points) Find all of the values of x such that the matrix A is singular—i.e. not invertible.
(Hint: You may wish to consider the determinant.)
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(2) (15 points) For the given matrix B, compute the cofactors C;, Cs1, C3;. Note the indices of
the requested cofactors.
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(3) (10 points) Use coordinate vectors to determine if the given polynomials are linearly dependent
or independent in P’;. Use the elementary basis in P5. If they are dependent, clearly identify a
linear dependence relation.
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(4) (25 points) Find bases for each of the row space, column space, and null space of the given
matrix. State the rank and the nullity of the matrix.
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(5) (5 points) Suppose that A, B and P are 20 x 20 matrices and that P is invertible
If B= P~'AP, show that det(B) = det(A).
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(6) (20 points) Solve the system using a matrix inverse
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"You may use the established result that det(P~1)det(P) = 1.



(7) (10 points) Suppose the matrices A and B are row equivalent, and B was obtained from A by
doing the following sequence of row operations to A:
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(a) If det(A) = —9, determine the value of det(B).
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(b) If instead det(B) = 8, what is the value of det(A)?
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(8) (5 points) Either show that the given set is a subspace of P, by finding a spanning set, or show
that it is not a subspace of P, by demonstrating that it violates one of the necessary properties of
subspaces.
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