Exam 3 Math 1113 sec .52 Fall 2018

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.
Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

INSTRUCTIONS: There are 10 problems worth 10 points each. No calculator use is allowed on the first 9 problems of this exam. Once you have completed the 9 problems, turn this in and receive the last problem. There are no notes, or books allowed. Illicit use of a smart phone, tablet, device that runs apps, or notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, and written using proper notation.

1. For the given function f, construct and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.

$$
\begin{array}{rl}
f(x)=x^{2}+3 x-7 & f(x+h) \\
=(x+h)^{2}+3(x+h)-7 \\
& =x^{2}+2 x h+h^{2}+3 x+3 h-7 \\
\frac{f(x+h)-f(x)}{h} & =\frac{x^{2}+2 x h+h^{2}+3 x+3 h-7-\left(x^{2}+3 x-7\right)}{h} \\
& =\frac{2 x h+h^{2}+3 h}{h} \\
& =\frac{h(2 x+h+3)}{h}=2 x+h+3
\end{array}
$$

2. Let $g(x)=\left\{\begin{array}{lc}x-1, & -1 \leq x<1 \\ 2, & x=1 \\ x-2, & 1<x \leq 3\end{array}\right.$.
(a) Evaluate $g(1)=2$
(b) Evaluate $g\left(\frac{1}{2}\right)=\frac{1}{2}-1=-\frac{1}{2}$
(c) Evaluate $g\left(\frac{3}{2}\right)=\frac{3}{2}-2=\frac{-1}{2}$
(d) Is g a one to one function? (Justify) No, in fact $g\left(\frac{1}{2}\right)=g\left(\frac{3}{2}\right)$

$$
\text { but } \frac{1}{2} \neq \frac{3}{2}
$$

(e) Which of the following plots shows a graph of $y=g(x)$?

3. Each function is one to one. Find it's inverse function.
(a) $g(x)=\frac{3 x}{x+2}$

$$
\begin{aligned}
& y=\frac{3}{x} \\
& \frac{-2 x}{x-3}
\end{aligned}
$$

(b) $f(x)=2 \ln (x+1)$

$$
f^{-1}(x)=e^{\frac{1}{2} x}-1
$$

$$
\begin{aligned}
& x=2 \ln (y+1) \\
& \ln (y+1)=\frac{1}{2} x \\
& y+1=e^{\frac{1}{2} x} \\
& y=e^{\frac{1}{2} x}-1
\end{aligned}
$$

4. Find all solutions to each equation. Your solutions should be exact (ie. not decimal approximaions).
(a) $3^{x}=7^{x-1}$

$$
\ln 3^{x}=\ln 7^{x-1}
$$

$$
x=\frac{-\ln 7}{\ln 3-\ln 7}
$$

$$
\begin{aligned}
& x \ln 3=(x-1) \ln 7 \\
& x(\ln 3-\ln 7)=-\ln 7 \\
& x=\frac{-\ln 7}{\ln 3-\ln 7}
\end{aligned}
$$

(b) $\log _{4}(x+3)^{2}=1=\log _{4} 4 \quad \Rightarrow \quad(x+3)^{2}=4$

Check

$$
\begin{aligned}
& \log _{4}(-5+3)^{2}=\log _{4}(-2)^{2}=\log _{4}(4) \\
& \log _{4}(-1+3)^{2}=\log _{4}(2)^{2}=\log _{4}(4)
\end{aligned}
$$

$$
\begin{aligned}
x+3 & = \pm \sqrt{4}= \pm 2 \\
x & =-3 \pm 2 \\
x & =-5 \text { or } x=-1
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{3 y}{y+2} \quad x(y+2)=3 y \\
& x y-3 y=-2 x \\
& y(x-3)=-2 x \\
& y=\frac{-2 x}{x-3}
\end{aligned}
$$

5. Suppose θ is an acute angle and $\cos \theta=\frac{2}{5}$. Determine each of the other five trignometric values of θ. (Rationalizing denominators is NOT necessary.)

$$
\begin{array}{ll}
\sin \theta=\frac{\sqrt{21}}{5} & \tan \theta=\frac{\sqrt{21}}{2} \\
\csc \theta=\frac{5}{\sqrt{21}} & \cot \theta=\frac{2}{\sqrt{21}}
\end{array}
$$

6. Fill in the table with the remaining trigonometric values of the indicated angles.

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

7. Express each as a single logarithm.
(a) $\frac{1}{4} \log _{2}(x-1)-\log _{2}(x+1)+\log _{2}(y)$

$$
\begin{aligned}
& =\log _{2} \sqrt[4]{x-1}-\log _{2}(x+1)+\log _{2} y \\
& =\log _{2}\left(\frac{\sqrt[4]{x-1} y}{x+1}\right)
\end{aligned}
$$

(b) $\ln (2 x)+\ln (2 y)-\frac{1}{2} \ln \left(x^{2}+y^{2}\right)=\ln (2 x \cdot 2 y)-\ln \sqrt{x^{2}+y^{2}}$

$$
=\ln \left(\frac{4 x y}{\sqrt{x^{2}+y^{2}}}\right)
$$

8. Expand each expression as much as possible into a sum, difference, and multiple of logarithms.
(a) $\log \sqrt{\frac{x^{5} y^{3}}{z+2}}=\frac{1}{2} \cdot \log \left(\frac{x^{5} y^{3}}{z+2}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\log x^{5}+\log y^{3}-\log (z+2)\right) \\
& =\frac{5}{2} \log x+\frac{3}{2} \log y-\frac{1}{2} \log (z+2)
\end{aligned}
$$

(b) $\ln \left(\frac{4^{x}}{x^{2}(x+2)}\right)=\ln 4^{x}-\ln \left(x^{2}(x+2)\right)$

$$
\begin{aligned}
& =x \ln 4-\left(\ln x^{2}+\ln (x+2)\right) \\
& =x \ln 4-2 \ln x-\ln (x+2)
\end{aligned}
$$

9. Evaluate each expression exactly.
(a) $\ln \left(\frac{1}{e^{4}}\right)=-4$
(b) $\ln (1)=0$
(c) $e^{\ln 8}=8$
(d) $\log (0.01)=-2$
(e) $3^{2 \log _{3}(3)}=3^{\log _{3} 3^{2}}=3^{2}=9$

Name:

You may use a non-CAS calculator to answer this question.
10. The Golden Gate Bridge has two main towers of equal height that support the two main cables. A visitor on a tour boat passing through San Francisco Bay views the top of one of the towers and estimates the angle of elevation to be 30°. After sailing 670 feet closer, he estimates the angle of elevation to this same tower to be 50°. Approximate the height x of the tower to the nearest foot.

$$
\frac{x}{y}=\tan 50^{\circ} \quad \frac{x}{y+670}=\tan 30^{\circ}
$$

$$
x=y \tan 50^{\circ}=(y+670) \tan 30^{\circ}
$$

$$
y\left(\tan 50^{\circ}-\tan 30^{\circ}\right)=670 \tan 30^{\circ}
$$

$$
y=\frac{670 \tan 30^{\circ}}{\tan 50^{\circ}-\tan 30^{\circ}}
$$

Since $x=y \tan 50^{\circ}$

$$
x=\frac{670 \tan 30^{\circ} \tan 50^{\circ}}{\tan 50^{\circ}-\tan 30^{\circ}} \approx 750 \text { feet }
$$

