# Exam 3 Math 1190 sec. 51 

Summer 2017

Name:


Your signature (required) confirms that you agree to practice academic honesty.

Signature:

| Problem | Points |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |

INSTRUCTIONS: You have 60 minutes to complete this exam.
There are 8 problems. The point values are listed with the problems.

There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) (15 points, 5 each) Evaluate each limit using any applicable technique.
a) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}=\lim _{x \rightarrow 0} 3 \frac{\sin (3 x)}{3 x}=3 \cdot 1=3$
b) $\lim _{t \rightarrow 0} \frac{e^{-t}-1}{2 t}=\frac{1-1^{\prime \prime}}{0}=\frac{{ }^{\prime}}{0}$

$$
\lim _{r e l}^{H_{t \rightarrow 0}}=\lim _{t \rightarrow e^{-t}}^{2}=\frac{-e^{0}}{2}=\frac{-1}{2}
$$

c) $\lim _{x \rightarrow 1} \frac{x^{2}+1}{x^{2}-2}=\frac{1+1}{1-2}=\frac{2}{-1}=-2$
(2) (10 points) Find the absolute maximum value and the absolute minimum value of the function on the given interval.

$$
\begin{array}{r}
f(x)=x^{3}-3 x+4, \quad \text { on }[0,3] \\
f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)=3(x-1)(x+1)
\end{array}
$$

$$
\begin{gathered}
f^{\prime}(x) \text { olunays } \\
\text { exists }
\end{gathered}
$$

$$
f^{\prime}(x)=0 \Rightarrow x=1 \text { or } x=-1
$$

Orly the crit. $\pm 1$ is on the interval.

$$
\begin{aligned}
& f(0)=0^{3}-3 \cdot 0+4=4 \\
& f(1)=1^{3}-3 \cdot 1+4=1-3+4=2 \quad \text { amin } \\
& f(3)=3^{3}-3 \cdot 3+4=27-9+4=22 \quad \text { tax }
\end{aligned}
$$

The abs. max is $22=f(3)$. The abs min

$$
\text { is } \quad 2=f(1)
$$

(3) (10 points) Suppose $g$ is continuous on $(-\infty, \infty)$ with second derivative

$$
g^{\prime \prime}(x)=e^{x}\left(x^{2}-4\right)=e^{x}(x-2)(x+2)
$$

Determine the intervals over which the graph of $g$ is concave up and the intervals over which it is concave down. Identify the $x$-valu es), if any, at which $g$ has a point of inflection.

$$
\left.\left.g^{\prime \prime}(x) \text { is clays ding } \quad g^{\prime \prime}(x)=0 \Rightarrow e^{x}=0 \quad x-2=0\right\} \Rightarrow \begin{array}{l}
x=2 \\
\text { or } x+2=0
\end{array}\right\} \begin{aligned}
& x=-2
\end{aligned}
$$



Test

$$
\begin{aligned}
& \delta^{\prime \prime}(-3)=e^{-3}(-3-2)(-3+2)+\cdots- \\
& \delta^{\prime \prime}(8)=e^{0}(0-2)(0+2)+++ \\
& \delta^{\prime \prime}(3)=e^{3}(3-2)(3+2)+
\end{aligned}
$$

$g$ is concave up on $(-\infty,-2) \cup(2, \infty) \quad g$ is concave down on $(-2,2)$
$g$ has inflection points) at -2 and 2 (Write "none" if there are no inflection points.)
(4) (10 points, 5 each) Find all critical numbers of each function.
a) $f(x)=x^{4}-\frac{8}{3} x^{3}+2 x^{2}+1 \quad$ Domain - ale reds

$$
f^{\prime}(x)=4 x^{3}-8 x^{2}+4 x=4 x\left(x^{2}-2 x+1\right)=4 x(x-1)^{2}
$$

$f^{\prime}(x)$ exist evens where

$$
\begin{aligned}
& f^{\prime}(x)=0 \quad \Rightarrow \quad \text { or } \quad(x-1)^{2}-0 \\
& x=0 \text { or } \\
& x=1
\end{aligned}
$$

The crit \#s are 0 and 1 .
b) $f(x)=\frac{x+1}{x^{2}+3} \quad f^{\prime}(x)=\frac{1\left(x^{2}+3\right)-2 x(x+1)}{\left(x^{2}+3\right)^{2}}=\frac{x^{2}+3-2 x^{2}-2 x}{\left(x^{2}+3\right)^{2}}$

Demon all reds

$$
=\frac{-x^{2}-2 x+3}{\left(x^{2}+3\right)^{2}}
$$

$f^{\prime \prime}(x) D W E$ if $x^{2}+3=0$

$$
\begin{array}{r}
f^{\prime \prime}(x)=0 \Rightarrow-x^{2}-2 x+3=0 \Rightarrow \quad-\left(x^{2}+2 x-3\right)=0 \\
-(x+3)(x-1)=0 \\
x=-3 \text { or } x=1
\end{array}
$$

The two crit \#'s are -3 and 1.
(5) Use the graph of $y=f(x)$ shown to evaluate or answer each question.

a) (3 points) Is $f^{\prime \prime}(-2)$ positive, negative, or zero? negative (con cove down)
b) (3 points) Evaluate (or write DNE) $f^{\prime}(3)=$ DWE (corner)
c) (3 points) Evaluate (or write DNE) $f^{\prime}(1)=0$ (horizontal targunt)
d) (2 points) The graph of $f$ has one point of inflection. Which of the following could be its location? (circle one)

$$
\begin{aligned}
x=-2, \quad x=-1, & x=0,
\end{aligned} \quad x=1
$$

e) (2 points) Which value is greater $f^{\prime}\left(\frac{1}{2}\right)$ or $f^{\prime \prime}\left(\frac{1}{2}\right) ? \quad f^{\prime \prime}\left(\frac{1}{2}\right)>f^{\prime}\left(\frac{1}{2}\right)$

$$
\begin{array}{ll}
\text { neg pos. } \\
\text { slop concerts }
\end{array}
$$

f) (2 points) Jack claims that $\int_{0}^{2} f(x) d x$ must be positive because the graph there is concave up. Diane claims that $\int_{0}^{2} f(x) d x$ must be negative because the graph there is below the $x$-axis. One of them is correct. Who is correct? Why?

$$
\begin{aligned}
& \text { Dione is correct. The region is below the } \\
& x \text {-axis Hence } \int_{0}^{2} f(A) d x=\text { - Area } \\
& \text { concavity isnit relevant. }
\end{aligned}
$$

(6) The figure shows the graph of $y=f(x)$.


$$
\begin{aligned}
& A_{1}=A_{2}=A_{3}=\frac{1}{2} \cdot 1 \\
& A_{4}=A_{3}=1.1=1
\end{aligned}
$$

(12 points, 4 each) Use the graph to evaluate each integral.
(a) $\int_{-1}^{1} f(x) d x=A_{1}+A_{2}=\backslash$
(b) $\int_{-1}^{2} f(x) d x=A_{1}+A_{2}-A_{3}=\frac{1}{2}$
(c) $\int_{0}^{4} f(x) d x=A_{2}-A_{3}-A_{4}-A_{5}=\frac{1}{2}-\frac{1}{2}-1-1=-2$
(7) (20 points, 4 each) Determine the most general antiderivative of each function. (Use the uppercase/lowercase convention for naming your antiderivatives.)
a) $f(x)=2 x-3$

$$
F(x)=x^{2}-3 x+C
$$

b) $g(t)=\cos t-\sin t$

$$
G(t)=\sin t+\cos t+C
$$

c) $f(x)=\frac{1}{1+x^{2}} \quad F(x)=\tan ^{-1} x+C$
d) $h(x)=\frac{4 x^{4}+3 x^{3}}{x}=4 x^{3}+3 x^{2} \quad H(x)=x^{4}+x^{3}+C$
e) $y=3 e^{3 x}$

$$
y_{1}=e^{3 x}+C
$$

(8) (8 points) Find $\frac{d y}{d x}$ given $y=x^{x} . \quad \ln y=\ln x^{x}=x \ln x$

$$
\begin{aligned}
\frac{d}{d x} \ln y & =\frac{d}{d x} \times \ln x \\
& \frac{1}{y} \frac{d y}{d x}=1 \cdot \ln x+x \cdot \frac{1}{x}=\ln x+1 \\
\frac{d y}{d x} & =y(\ln x+1) \Rightarrow \frac{d y}{d x}=x^{x}(\ln x+1)
\end{aligned}
$$

