Exam 3 Math 1190 sec. 63

Spring 2017

Name:

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: You have 50 minutes to complete this exam.
There are 7 problems. The point values are listed with the problems.
There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) (18 points) Evaluate each limit using any applicable technique.
(a) $\lim _{x \rightarrow 0} \frac{1-3^{x}}{x}=\frac{" 1 "}{0}=\frac{1-1}{0}$ use $l^{\prime H}$ rale

$$
=\lim _{x \rightarrow 0} \frac{-3^{x} \ln 3}{1}=-3^{0} \ln 3=-\ln 3
$$

(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+4}=\frac{2^{2}-4}{2^{2}+4}=\frac{0}{8}=0$
(c) $\lim _{x \rightarrow 0^{+}}(1+4 x)^{1 / x}=1^{\infty}$

Note $\ln (1+4 x)^{\frac{1}{x}}=\frac{1}{x} \ln (1+4 x)=\frac{\ln (1+4 x)}{x}$
$\lim _{x \rightarrow 0^{+}} \frac{\ln (1+4 x)}{x}=\frac{0}{0}^{\prime \prime}$ Use lH raul

$$
=\lim _{x \rightarrow 0^{+}} \frac{\frac{4}{1+4 x}}{1}=\frac{4}{1+0}=y
$$

$$
\text { Hence } \lim _{x \rightarrow 0^{+}}(1+4 x)^{\frac{1}{x}}=e^{4}
$$

(2) (a) (8 points) Find all of the critical numbers of the function $f(x)=3 x^{2}-2 x^{3}$.

$$
\begin{aligned}
& f^{\prime}(x)=6 x-6 x^{2}=6 x(1-x), \quad f^{\prime} \text { is never undefined } \\
& f^{\prime}(x)=0 \Rightarrow 6 x(1-x)=0 \Rightarrow x=0 \text { or } x=1
\end{aligned}
$$

The two Critical numbers ane 0 and 1 .
(b) (8 points) Find the absolute maximum and absolute minimum values of $f(x)=3 x^{2}-2 x^{3}$ on the interval $[-1,2]$. Check f @ end pts and critical numbers.

$$
\begin{aligned}
& f(-1)=3-2(-1)=5 \\
& f(0)=0 \\
& f(1)=3-2=1 \\
& f(2)=3 \cdot 4-2 \cdot 8=-4
\end{aligned}
$$

The absolute max vole is

$$
s=f(-1)
$$

The cbssinte rim value is

$$
-4=f(2)
$$

(3) (12 points) Find the most general antiderivative of each function.
(a) $y(x)=\frac{2 x^{2}-1}{x}=2 x-\frac{1}{x} \quad Y(x)=x^{2}-\ln |x|+C$
(b) $\begin{array}{ll}f(x)=3 e^{3 x}-5 x^{4} \quad F(x)=e^{3 x}-x^{5}+C\end{array}$
(c) $g(x)=\frac{1}{1+x^{2}}$

$$
G(x)=\tan ^{-1} x+C
$$

(4) (18 points) Find $\frac{d y}{d x}$ using any applicable technique.
(a) $\quad y=\csc (\ln x)$

$$
y^{\prime}=-\csc (\ln x) \cot (\ln x) \cdot \frac{1}{x}
$$

(b) $y=(\tan x)^{x} \quad \ln y=\ln (\tan x)^{x}=x \ln (\tan x)$

$$
\begin{aligned}
\frac{1}{b} \frac{d y}{d x} & =\ln (\tan x)+x \frac{\sec ^{2} x}{\tan x} \\
\frac{d y}{d x} & =y\left(\ln (\tan x)+\frac{x \sec ^{2} x}{\tan x}\right)=(\tan x)^{x}\left(\ln (\tan x)+x \frac{\sec ^{2} x}{\tan x}\right)
\end{aligned}
$$

(c) $y=\log _{4}\left(x^{3}+1\right)$

$$
y^{\prime}=\frac{3 x^{2}}{\left(x^{3}+1\right) \ln 4}
$$

(5) (12 points) Suppose f is continuous on $(-\infty, \infty)$ and has the derivative

$$
f^{\prime}(x)=(x+3)(x-2)^{2}(x-5)
$$

Determine the intervals on which f is increasing and the intervals on which it is decreasing. f^{\prime} is always defined $\quad f^{\prime}(x)=0 \Rightarrow x=-3,2,5$

Test

$$
\begin{array}{lll}
f^{\prime}(-4)(-)(+)(-) & f^{\prime}(3)(+)(+)(-1 \\
f^{\prime}(0)(+)(-)(-) & f^{\prime}(6)(+)(+)(+)
\end{array}
$$

f is increasing on $(-\infty,-3) \cup(5, \infty) \quad f$ is decreasing on $(-3,2) \cup(2,5)$
(6) (14 points) Determine the intervals) over which $f(x)=x e^{-x}$ is concave up, and the interval(s) over which it is concave down. Identify all x-values (if there are any) at which f has a point of inflection.

$$
\begin{aligned}
& f^{\prime}(x)=1 \cdot e^{-x}+x \cdot e^{-x}(-1)=e^{-x}(1-x) \\
& f^{\prime \prime}(x)=e^{-x}(-1)+(1-x) e^{-x}(-1)=-e^{-x}-e^{-x}+x e^{-x} \\
&=e^{-x}(x-2) \\
& f^{\prime \prime}(x) \text { is class defind. } \\
& f^{\prime \prime}(x)=0 \Rightarrow e^{-x}(x-2)=0 \\
& e^{-x}=0 \\
& t_{0}
\end{aligned}
$$

f is concave up on \qquad $(2, \infty)$ f is concave down on \qquad $(-\infty, 2)$ f has points) of inflection at \qquad $x=2$ (write "none" if there are none)
(7) (10 points) Use the graph of $y=f(x)$ shown to evaluate or answer the following questions.

a. Evaluate if possible (otherwise write DNE) $f^{\prime}(2)=0$ (horizontal tangut)
b. Is $f^{\prime \prime}(x)$ positive, negative, or zero on the interval $3<x<5$? (How do you know?)
negative, graph is concave down
c. f has one point of inflection on the interval $[-4,5]$. Which of the following could be its location: (circle one)

$$
\begin{array}{llll}
x=-3 & x=-1 & x=2 & x=3
\end{array} \quad x=4
$$

d. Evaluate if possible (otherwise write DNE) $\lim _{x \rightarrow 1^{-}} f(x)=3$
e. Which number is greater $f^{\prime}\left(\frac{3}{2}\right)$ or $f^{\prime \prime}\left(\frac{3}{2}\right)$? (How do you know?)
$\left.\begin{array}{l}f^{\prime}\left(\frac{3}{2}\right)<0 \text { slope burn } \\ f^{\prime \prime}\left(\frac{3}{2}\right)>0 \quad \text { concourse } \sim p\end{array}\right\} \Rightarrow f^{\prime \prime}\left(\frac{3}{2}\right)>f^{\prime}\left(\frac{3}{2}\right)$

