Exam III Math 3260 sec. 55

Spring 2018

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are 7 problems; the point values are listed with the problems. You may use a calculator with matrix capabilities. No wifi enabled device can be used as a calculator. There are no notes, or books allowed. Illicit use of a smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, you must clearly justify your answer.
(1) (15 points) Find an orthonormal basis for the column space of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$.
Orthog oud: \vec{v}_{1}, \vec{v}_{2}
\vec{u}_{1}
\vec{u}_{2}
$\vec{v}_{1}=\vec{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
$\vec{v}_{2}=u_{2}-\frac{\vec{u}_{2} \vec{v}_{1}}{\vec{v}_{1} \cdot \nabla_{1}} \vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ 1 \\ 1 / 2\end{array}\right]$
Orshogond $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 / 2 \\ -1 / 2\end{array}\right]\right\}$
$\|\vec{\omega}\|=,\sqrt{1+1}=\sqrt{2}, \quad \quad\left\|\nabla_{2}\right\|=\sqrt{\frac{1}{4}+1+\frac{1}{4}}=\sqrt{\frac{6}{4}}=\sqrt{\frac{3}{2}}$

Orthonornd

$$
\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \sqrt{\frac{2}{3}}\left[\begin{array}{c}
1 / 2 \\
1 \\
-1 / 2
\end{array}\right]\right\}
$$

(2) (10 points) The given set \mathcal{B} is a basis for \mathbb{R}^{2}. Determine the change of coordinates matrix $P_{\mathcal{B}}$ and its inverse (use the order presented here). Then use this to find the indicated coordinate vectors.

$$
\begin{gathered}
\mathcal{B}=\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\} \\
P_{Q}=\left[\begin{array}{cc}
1 & 3 \\
-1 & 1
\end{array}\right] \quad \operatorname{dt}\left(P_{Q}\right)=4 \quad P_{B}^{-1}=\frac{1}{4}\left[\begin{array}{lc}
1 & -3 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

Determine $[\mathbf{x}]_{\mathcal{B}}$ for
(a) $\mathrm{x}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$,
(b) $\quad \mathbf{x}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$

$$
\begin{aligned}
{[\vec{x}]_{B}=P_{B}^{-1} \vec{x} } & =\frac{1}{4}\left[\begin{array}{ll}
1 & -3 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{c}
-4 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
{[\vec{x}]_{B}=P_{B}^{-1} \vec{x} } & =\frac{1}{4}\left[\begin{array}{cc}
1 & -3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{c}
-4 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

(3) (15 points) Determine the dimension of each vector space described.
(a) The space \mathbb{P}_{4} of polynomials of degree at most 4 .

$$
\operatorname{dim}\left(\mathbb{P}_{4}\right)=5
$$

(b) The subspace of \mathbb{R}^{6} of vectors of the form $\left(0, x_{2}, x_{3}, x_{4}, x_{5}, 0\right)$.

(c) The null space of a 7×9 matrix A if $\operatorname{rank}(A)=6$.

$$
\text { nelity }+6=9 \Rightarrow \text { nelits }=3
$$

(4) (10 points) Consider the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 1\end{array}\right]$.
(a) Determine the norm $\|\mathbf{v}\|$.

$$
\|v\|=\sqrt{1+4+4+1}=\sqrt{10}
$$

(b) Find a unit vector parallel to \mathbf{v}. (Call the new vector \mathbf{u}.)

$$
\vec{u}=\frac{1}{1 w n} \vec{v}=\left[\begin{array}{l}
1 / \sqrt{10} \\
2 / \sqrt{10} \\
2 / \sqrt{10} \\
\frac{1}{\sqrt{10}}
\end{array}\right]
$$

(5) (25 points) Find bases for each of $\operatorname{Col} A, \operatorname{Row} A$, and $\operatorname{Nul} A$. State the rank and the nullity of A where

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 2 & 7 \\
2 & 6 & 4 & 14 \\
1 & 3 & 1 & 3
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 3 & 0 & -1 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

\vec{x} in Ne A

$$
\begin{aligned}
& x_{1}=-3 x_{2}+x_{4} \\
& x_{3}=-4 x_{4} \\
& x_{2}, x_{4} \text { free }
\end{aligned}
$$

(Be sure to write any calculator output on this page to show that upon which your conclusions are based.)

$$
\begin{aligned}
& \text { Bases are: } \\
& \text { Nun } A=\operatorname{Spen}\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-4 \\
1
\end{array}\right]\right\} \\
& \operatorname{col} A=\operatorname{spen}\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right]\right\} \\
& \text { Row } A=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
3 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
4
\end{array}\right]\right\}
\end{aligned}
$$

$$
\operatorname{rank} A=2, \quad \text { Nullity }(A)=2
$$

(6) (15 points) Find the orthogonal projection of $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right]$ onto the line $L=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$, and determine the distance from \mathbf{y} to L. (Hint: Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\hat{\mathbf{y}}$ is the orthogonal projection.)

$$
\hat{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=\frac{6}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]
$$

The or thugond projection is $\left[\begin{array}{l}3 \\ 0 \\ 3\end{array}\right]$.

$$
\vec{y}-\hat{y}=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]-\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{r}
-2 \\
2 \\
2
\end{array}\right]
$$

The distance from \vec{y} to L is

$$
\left\|\left[\begin{array}{c}
-2 \\
2 \\
2
\end{array}\right]\right\|=\sqrt{4+4+4}=\sqrt{12}
$$

(7) (10 points) Let $A=\left[\begin{array}{rr}2 & 1 \\ -2 & 5\end{array}\right]$. One of the eigenvalues of A is $\lambda=3$. Find a basis for the associated eigenspace.

$$
\begin{aligned}
& A \vec{x}=3 \vec{x} \Rightarrow\left[\begin{array}{cc}
2-3 & 1 \\
-2 & 5-3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & 1 \\
-2 & 2
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \begin{array}{l}
x_{1}=x_{2} \\
x_{2} \text {-fen }
\end{array}} \\
& \text { s= } \vec{x}=x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot A \text { basis is }\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

The Gram-Schmidt Process: Given a set of basis vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ in some inner product space \mathbf{V}, we can obtain an orthonormal set $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right\}$ that spans the same subspace. First, we obtain the orthogonal set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ where

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{u}_{1} \\
\mathbf{v}_{2} & =\mathbf{u}_{2}-\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{u}_{3}-\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
& \vdots \\
\mathbf{v}_{n} & =\mathbf{u}_{n}-\sum_{k=1}^{n-1} \frac{\mathbf{u}_{n} \cdot \mathbf{v}_{k}}{\mathbf{v}_{k} \cdot \mathbf{v}_{k}} \mathbf{v}_{k}
\end{aligned}
$$

Finally, we obtain the orthonormal set by dividing each \mathbf{v}_{i} by its norm. That is, for $i=1, . ., n$ set

$$
\mathbf{w}_{i}=\frac{1}{\sqrt{\mathbf{v}_{i} \cdot \mathbf{v}_{i}}} \mathbf{v}_{i} .
$$

