Exam 3 Math 3260 sec. 57

Fall 2017

Name: Solctions

Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems; the point values are listed with the problems. You may use a calculator with matrix capabilities. No wifi enabled device can be used as a calculator. There are no notes, or books allowed. Illicit use of a smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, you must clearly justify your answer.
(1) (15 points) Use Gram Scmidt to find an orthogonal basis for $\operatorname{Col}(A)$ where $A=\left[\begin{array}{rrr}1 & 1 & 3 \\ 0 & 1 & -2 \\ 1 & -1 & 1\end{array}\right]$.
(Answers without supporting work will not be considered.)
$\vec{u}_{1} \vec{u}_{2}$
\vec{u}_{3}

$$
\begin{aligned}
& \vec{V}_{1}=\vec{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& \vec{v}_{2}=\vec{u}_{2}-\frac{\vec{u}_{2} \cdot \vec{v}_{1}-\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|^{2}} \quad \begin{array}{l}
\vec{u}_{2} \cdot \vec{v}_{1}=1-1=0 \\
\left\|\vec{v}_{1}\right\|^{2}=1+1=2
\end{array}
\end{aligned}
$$

$$
=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]-0=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

$$
\vec{v}_{3}=\vec{u}_{3}-\frac{\vec{u}_{3} \cdot \vec{v}_{1}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}-\frac{\vec{u}_{3} \cdot \vec{v}_{2}}{\left\|v_{2}\right\|^{2}} \vec{v}_{2}
$$

$$
\vec{u}_{3} \cdot \vec{v}_{1}=3+1=4
$$

$$
\vec{u}_{3} \cdot \vec{v}_{2}=3-2-1=0
$$

$$
\left\|\vec{v}_{2}\right\|^{2}=1+1+1=3
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]-\frac{4}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-0 \\
& =\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]
\end{aligned}
$$

an orthugond basis is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]\right\}
$$

(2) (20 points) Consider the vectors in $\mathbb{R}^{3}, \quad \mathbf{u}=\left[\begin{array}{r}1 \\ 1 \\ -2\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right]$.

Evaluate or otherwise answer the following. (Answers without supporting work will not be considered.)
(a) Find $\|\mathbf{u}\|=\sqrt{1+1+4}=\sqrt{6}$
(b) Evaluate $\mathbf{w} \cdot(\mathbf{u}+\mathbf{v})=\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right] \cdot\left(\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]\right)=9-1-1=7$
(c) Are \mathbf{u} and \mathbf{v} parallel, perpendicular, or neither? $\quad \vec{\omega} \cdot \vec{V}=2-2=0$ They an pependiculor
(d) Are \mathbf{v} and \mathbf{w} orthogonal?

$$
\stackrel{\rightharpoonup}{v} \cdot \stackrel{\rightharpoonup}{w}=6+0+1=7 \neq 0
$$

No.
(e) Find a unit vector in the direction of $w . \quad\|\vec{w}\|^{2}=9+1+1=11$

$$
\frac{1}{\|\vec{w}\|} \vec{w}=\left[\begin{array}{c}
3 / \sqrt{11} \\
-1 / \sqrt{n} \\
1 / \sqrt{11}
\end{array}\right]
$$

(3) (20 points) Suppose A is a 5×5 matrix whose eigenvalues are found to be

$$
\lambda_{1}=0, \quad \lambda_{2}=1, \quad \lambda_{3}=2, \quad \lambda_{4}=3, \quad \text { and } \quad \lambda_{5}=4
$$

Use this information to answer the following questions.
(a) If $\mathbf{x}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 2\end{array}\right]$ is an eigenvector of A corresponding to $\lambda_{3}=2$, compute $A \mathbf{x}_{3}$.
$A \vec{x}_{3}=2 \vec{x}_{3}=\left[\begin{array}{l}2 \\ 0 \\ 2 \\ 0 \\ 4\end{array}\right]$
(b) Evaluate $\operatorname{det}(A-4 I)=0 \quad \sin 4 \quad 4$ is on eiginvalue
(c) If $\mathbf{x}_{4}=\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 1 \\ 1\end{array}\right] \quad$ is an eigenvector corresponding to $\lambda_{4}=3$, then $\left\|A \mathbf{x}_{4}\right\|=$
$\left\|A \vec{x}_{4}\right\|=\left\|3 \vec{x}_{4}\right\|=|3|\left\|\vec{x}_{n}\right\|=3 \sqrt{4+1+1}=3 \sqrt{6}$
(d) Jack and Diane want to solve the equation $A \mathbf{x}=\mathbf{b}$ with this matrix and some given vector b. Jack says they can solve the problem by computing A^{-1} because A has 5 different eigenvalues. Diane disagrees. She says that A doesn't have an inverse. One of them is correct. Who is correct, and how do you know?

$$
\begin{aligned}
& \text { Dime is correct. } \operatorname{det}(A)=0 \quad \sin a \quad \lambda_{1}=0 \text {. } \\
& \text { Hence } A \text { is not invertible. }
\end{aligned}
$$

(4) (15 points) Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.
(a) Find the characteristic polynomial of A.

$$
\begin{aligned}
\operatorname{dt}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right]\right) & =(1-\lambda)^{2}-4 \\
& =\lambda^{2}-2 \lambda-3
\end{aligned}
$$

(b) Determine the eigenvalues of A.

$$
\begin{aligned}
0 & =\lambda^{2}-2 \lambda-3 \\
\Rightarrow \quad \lambda & =3 \text { or } \lambda
\end{aligned}=-1
$$

$$
\text { The eigenvolver are } \lambda_{1}=3 \text { and } \lambda_{2}=-1
$$

(c) For each eigenvalue, find a basis vector spanning the associated eigenspace.

$$
\begin{aligned}
& A-3 I=\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right] \underset{\rightarrow}{\operatorname{set}}\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \begin{array}{ll}
x_{1}=x_{2} \\
x_{2}-\text { free }
\end{array} \quad \vec{x}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \text { a basis is }\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \\
& A+I=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right] \underset{\rightarrow}{\operatorname{rref}}\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \begin{array}{l}
x_{1}=-x_{2} \\
x_{2}-f_{\text {ref }}
\end{array} \quad \vec{x}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& \text { a bis is }\left\{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} \text {. }
\end{aligned}
$$

(5) (20 points) Let \mathbb{P}_{1}, the set of all polynomials of degree at most one, be given the inner product

$$
\langle\mathbf{p}, \mathbf{q}\rangle=\mathbf{p}(-1) \mathbf{q}(-1)+\mathbf{p}(1) \mathbf{q}(1)
$$

For the vectors $\quad \mathbf{p}(t)=1+2 t, \quad \mathbf{q}(t)=1-t, \quad$ and $\quad \mathbf{r}(t)=4 t$,
(a) Evaluate $\langle\mathbf{p}, \mathbf{q}\rangle=\vec{p}(-1) \stackrel{\rightharpoonup}{q}(-1)+\vec{p}(1) \overrightarrow{\mathcal{q}_{q}}(1)$

$$
=(1-2)(2)+(3)(0)=(-1)(2)+0=-2
$$

(b) Find the distance between q and r. $\|\vec{q}-\vec{r}\|^{2}=(1+5)^{2}+(1-5)^{2}$

$$
s-r=1-s t
$$

$$
=36+16=52
$$

$$
\|\vec{q}-\vec{r}\|=\sqrt{52}
$$

(c) Evaluate $\|\mathbf{p}\|^{2} . \quad\langle\vec{p}, \vec{p}\rangle=(\vec{p}(-1))^{2}+(\vec{p}(1))^{2}=(-1)^{2}+(3)^{2}=10$
(d) Find a unit vector in the direction of \mathbf{p}.

$$
\vec{u}=\frac{1}{\sqrt{10}}(1+2 t)
$$

(e) Find a vector $\mathbf{s}(t)=s_{0}+s_{1} t$ in \mathbb{P}_{1} that is orthogonal to $r . \quad \vec{r}(-1)=-4, \quad \vec{r}(1)=4$

$$
\begin{aligned}
\left\langle\overrightarrow{s_{1}} \vec{r}\right\rangle & =\left(s_{0}-s_{1}\right)(-4)+\left(s_{0}+s_{1}\right)(4) \\
& =-s_{0}+4 s_{1}+45_{0}+4 s_{1}=8 s_{1}=0 \Rightarrow s_{1}=0
\end{aligned}
$$

$$
s(t)=\text { so an example would be } \xi(t)=1
$$

(6) (10 points) Find the least squares ${ }^{1}$ best fit line to the data

x	-1	0	1	2
y	2	-4	2	3

$$
\begin{array}{cc}
y=m x+b \\
-m+b=2 \\
0 m+b=-4 \\
1 m+b=2 \\
2 m+b=3 & {\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{c}
2 \\
-4 \\
2 \\
3
\end{array}\right]} \\
\text { A } & \vec{b}
\end{array}
$$

$$
A^{\top} A=\left[\begin{array}{cccc}
-1 & 0 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
6 & 2 \\
2 & 4
\end{array}\right]
$$

$$
A^{\top} \vec{b}_{b}=\left[\begin{array}{cccc}
-1 & 0 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
-4 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
6 \\
3
\end{array}\right]
$$

$$
A^{\top} A \vec{x}=A^{\top} \dot{b} \quad\left[\begin{array}{lll}
6 & 2 & 6 \\
2 & 4 & 3
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 0 & 9 / 10 \\
0 & 1 & 3 / 10
\end{array}\right]
$$

$$
m=9 / 10
$$

$$
b=31,0
$$

[^0]
[^0]: ${ }^{1}$ Recall that the normal equations are $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.

